NORTH DAKOTA
STATE PLANNING BOARD
Summary Report of
A Plan of Water Conservation for
North Dakota
VOLUME 3

STATE PLANNiNG BOARD

SUMMARY REPORT
OF

A PLAN OF WATER CONSERVATION

 FORNORTH DAKOTA
volumie 3

SOUFIS AND DEVILS LAKE
DRAINAGE BASINS
BTATE WATER CONSERVATION COMMISSION
BISMARCK
BISMARCK, NORTH DAKÜTA
WATER COMMISSION

FLLE COPY

DO NOT remove

IANIJARYI. 1937
Noth Detor Statabret

Erach, 10 sucta

MOETTH DAINOTA STATE PIANEING BOARD

H; : Sirpson, Grand Forks $^{\text {, }}$
Mi, O, Ryen, Fargo
E.A, Willson, Bismarck
H.M. Pippin, Hallíciay
E.D. Ium, Whapeton

WATER STUDY STAFT
Irvin Lavino, Director
Cherles F. Hobbs, Assistant
Oscar Becker, Assistant

EITGIMEERITYG	GTOLOGY \& GEOGRAPHY	DRAFTISMEN	ECONOMICS
Charles F. Hobbs	Fredric Voedisch	Oscar Anderson	Leibel Bergman
Oscar Becker	Frank Foley	Merril Grady	Eliz. Goodnow
E.J. Tnomes	Syerre Scheldrup	Kenneth Joslin	Earry Anderson
E.F. Chandlor	John Petcrson	Lloyd Eng	
M.D. Hollis	E.P. Myner	Emmet Judge	

COOPRRATING AGRNCIES 1/

Forks Progress Administration. This report. was. propared ind publisked under W.P.A. Sponsored Federnl Project, No. 3, 0.P. No. 265-6005.
U.S. Biological Survey

Soil Conservation. Servico
North Dekote State Goological Survey Agricultural Dopt., N. Dak. Agric. Colloge State Department of Eealth
U.S. Geological Survey

Netionel Rosources Committee
Engineering College, Univ. of N.Dak.
Resettlement Administration
Stete Engineer

North Dekote County Flanning Boards
$1 /$
The Cooperating Agencies are not responsible for the opinions, conclusions, or recommendations of the State Planning Board as expressed in this report.

CHAPTER 1

SOURIS RIVER SUB BASIN

CHAPIER I
SOURIS RIVER SUB-BASIN

INDUSTRIES
: POPUTETION

The Souris River, sometimes called the Mouse River, rises in southeastern Saskatcheman. It flows in a southeasterly direction across the International Boundary into North Dakota and continues through Minot and on to Velva. Here the general direction of flow is changed to the northeast until the river reaches Towner, where it curves to the northeest. It continues in this direction until it crosses into Manitoba, Canada. In entering and leaving North Dakote the river encircles an area known as the Mouse River Loop, which comprises in ceneral, an area of untimbered rolling prairie, much of it having poorly defined drainage. At the point where the main stream reaches North Dakota its theoretical drainage area is 8,170 square miles of which 6,930 square miles are in Saskatchewan, 30 in Montana, and 1,210 in North Dahota. Ten miles upstream from Minot the Mouse receives the waters of the Des Lacs River, which heads at the Intcrnational Boundary and has a total drainage area of about $1,5=0$ square miles. When the Souris River leaves the United States and enters Manitoon it hes encircled about 2,600 square miles of the Mouse River Loop. Land outside the loop that is drained by it brings the total drainage area, bofore the river reaches Canada, to 16,400 square miles, of which 8,804 square miles (or more than one eighth the area of the entire State) is in North Dakota.
basin However, scme lignite cosl mining is carried on along the Des Lacs River.

According to the 1930 census the total nopulation of the Souris River Sub-basin in North Dakota was 94,439 persons. There were about 15 towns in the area having a pomulation of 500 persons or over and included in this grour are: Bottineau, 1322; Bowbells, 695; Columbus, 516; Crosby, 1,271; Drake, 644; Kenmare, 1,494; Minot, 16,099; Mohall,676; Portal, 512; Rugby, 1,512; Towner, 622; Velva, 872; Westhope, 521; Willow City, 577; and Berthold, 511.

FFBDERAL AID 40.3 percent of the population were receiving federal aid. This compares with the peak state average of 31.6 percent. During the peak month of W.P.A. employment 1,768 persons were employed on work projects in or near cities and villages, and 7,274 persons were employed on rural projects, making a total of 9,042 persons employed in October, 1936.
of a fairly constant width of about one-half mile, with sides rising sharply 100 feet or more to broad level benches. From Minot to Verendrye the valley has the same general characteristics but is wider in places, and the benches are somewhat lower and more broken. Below Verendrye the bench on the north sice diminishes to a low ridge, and the lands toward 3antry and Upham tend to morge with the valley. Tirough the valley the Souris River winds in a tortuous channel averaging somewhet less than 100 feet wide and 15 to 25 feet deep. The total channel length is about twice that of the valley proper. The channel capacity is sufficient only ior small floods. As a result there is occasional general inundation, sometimes causing considorable damage to Minot and other towns in the valley and to the valley in general.

SJOPE OF THE FIVER

DRAINAGE

The fail is very small for a stream having an average flow of less than 200 cubic feet per second. From the international boundary to Minat, 64 miles down the valloy, the fall is from flevation 1605 to 1635 , only one foot por mile of valley or less than a half foot per mile of channel. The next 52 miles down the valley to Towner, whore the river level is about olevation 1446 , has a 100 and twothirds fall per mile of valley. The remaining 57 miles to the international boundary has less than forty feet of fall, so that the entire fall in the 170 riles of valley length (about 360 channel miles) in North Dakota is slightly less than 200 feet. Except at flood stage, a peak renched at only a very small fraction of the time, the water flowing in the channel is only a few feet or a few inches deep.

A strip east of the river and only a few miles in width, extending from the international boundery to Minot and Velva, drains westward to the upper portion of the river. The remainder of the "Mouse River Loop" slopes eastward so as to drain int the lower section of the river. The land in this area is fairly smooth and even. The eastern and north eastern two-thirds of the "Loop" is at an elevation of less than 1500. All of the eastern part of the "Loop" and the strip east of the river, previously mentioned, up to an elevation considerably above 1500 was included in Lake Souris when the outlet of the river was closed by the polar glacier. The water from the melting ice then flowed southward by several difierent successive routes. The arainage was probably over the divide into the upper James River, then into the upper Sheyenne River, and finally through Devils Lake and Stump Lake into the Sheyenne Kiver, arter which the northern ice barrier was renoved and the drainage egain to the north.

The principal tributaries above Minot are the Des Lacs River, entering the Souris River about 7 miles above Minot, near Burlington; Moose Mountain Creek, which receives run-off from the Moose Mountains in Canada; and Long Creek. The latter two enter the Mouse River in Canada. The most important tributary in North Dakota is the Des Lacs River which rises just north of the international boundary line in

Canada, entering North Dakota about 12 miles west of where the Mouse enters the State. It flows in a general southerly direction about 37 miles through a system of narrow lakes, occupying practically the entire valley of approximately one-half mile in width. From the Des Lacs Lakes it floms in a southeasterly direction some 35 miles to its junction with the Souris River. This valley resembles the Souris River Valley in its general characteristics, but the stream appears to be considerably amoller and the channel not nearly as wide. There are three lakes in the Des Lacs Lakes system mentioned above. These all lie at practically the same elevation. (The upper one is approximately 28 miles in length, the second, that at the town of Kenmare, about 3 miles, and the lower one, near: Baden, about 5 miles in length.) The normal area of the Upper Des Lacs Lake is 6.7 semare miles; of Middle Des Lacs Lake, one square mile; and of Tower Des Lacs Lake it is 0.4 of a square mile. The total area is thus 8.1 square miles. These surface areas have been increased considerably by the construction of the various unite of the U. S. Biological Survey Des Lacs Lsikes Migratory Waterfowl Refuge so that the total area with all units full prould exceed 10 square miles. The three are separated by short channels running though marshy lands. The north end of Upper Des Lacs Lake in Canada is considerably higher than the Souris River, probably at least 100 feet which lies three miles to the North. The tributary area of the Des Lacs Lakes is insufficient to feed any very large lake as it is only about 530 . square miles. The average annual run-off from this area would not, on the most generous estimate, be enough to supply the evaporation from more than 20 square miles of total lake surface and more likely not more than 10 square miles. Therefore, the run-off from these lakes is usually very small. The lakes are all at an elevation about 1780 above mean sea level.

MINOT FLOODS

The precipitation is almost completely consumed by evaporation and transoiration, so that in the greater portion of the area the small intermittent channels carry the water only to hollows, sloughs or temporary lakelets, where, except in unusually wet years, it evaporates entirely and no run-off therefrom reaches the main stream.
all of the run-off reaching the streams comes from melting snow in the spring months of April and May. In years of plentiful enowfall the effect of the spring break-up is carried over into June, but during the remainder of the year little or no flow occurs. Sunmer rains seldom increase the river appreciably and there is no record of a curred. Flood stage has been considered by all investigations as being 2,500 feet at Minot. The theoretical drainage area at Minot is 10,270 square miles, and the maximum flood (1904) was 12,000 cubic feet per second. A flow of over 3,000 cubic feet per second has occurred in Minot during 6 years. The average flow is only 158
cubic feet per second, and in fifteen different years since 1903 the flow has remained below 10 cubic feet persecond for at least a month of the open season, besides frequentiy droppling below this in winter months.

CHANNEL CAPACITY

FLOOD IRRIGATION

The chennel in different sections has a carrying capacity of approxinately 3,000 cubic feet per second. When the flow is greater, water spreads, the depth varying from a few inches to a few feet, over the valley bottoms to a width of a quarter mile or more and remains there until the flood period is over. These flat bottom lands make excellent hay meadows. When they have been covered by soring flooding; and the water drains off within a few weeks, the residents are assured of two heavy cuttings of excellent hay during the season. The hay crop in a normal year is sufficient not only to care for the stock of a large area during the winter, but also to orovide feed for them during a record dry summer.

In view of the f:ct that there are fertile bottoms along the river, there are, between Velva, Towner, and Upham, about a half dozen good locations for flood irrigation projects. A flood irrigation project consists of an earth retaining wall or dam, a few feet high and a quarter mile to a mile in length, winich is built across the valley bottoms at a suitable narrow place, and a dam perhaps 15 or 20 feet high and 100 feet long buil* across the river channel in open frame form, se that it can be quickly closed with stop logs. The dam is left entirely open until the flood weeks have pas ed, and then (unless it was a flood spring with stage high enough to flood the meadows already) the dam is closed for a week or two thus raising the water so as to flood the bottom lands as desired for the entire width of the valley and for a length of 5 to 10 miles. The stop logs are then removed and the rater allowed to drain off the land. Through legislative appropriation and the cooperation of the U. S. Geological Survay in making topographic surveys, tentative sites for these dams rere located and three projects have been designed. These three projects are:

1. Eator Flood Irrigation Project, 8000 acres;
2. Hardy Flood Irrigation Project, 6000 acres;
3. Lee F'lood Irrigation Project, 6000 acres.

The water may be relayed from one flood irrigation dam to the next if the spring flow is not great enough to overflow the first dam and fill the lower dam.

Another practicable project, as surveyed by the office of the State Engineer (see biennial report, 1924-26, of North Dakota State Engineer) is the Buffalo Lodge Lake diversion and storage plan. This could take about 300 cubic feet per second when as much as that were available. from the Souris River near Verendrye, where natural low water level is about l47l, with a lift of about 25
feet by a dam, If the Missouri River Diversion Project were installed, a portion of its flow could easily be brought down the side of the Souris Valley to an elevation of at least 50 feet above the river level and taken across the river channel with a flume or inverted siphon without need for the cost of a dam in the Mouse River or the causing of any flowage damages. By means of a small gravity canal the water would be carried from the north bank of the river channel about 15 miles north to Buffalo Lodge Lake of which the approximate elevation is 2476 . This is a natural lake having a normal water surface of 2.4 square miles. An adjoining lake (North Lodge Lake) has an area of 0.7 square miles. Together the total area is approximately 3 square miles.

If raised by a dam to elevation 1485 the possible storage in these lakes would be 29,000 acre feet, and if raised to elevation 1488 a total storage of 55,000 acre feet would be possiole although this would increase the total surface area to about 12 square miles and hence bring larger evaporation losres. The first part of the stored water, however, would increase the natural lake area so little as to involve no noticeable additional evaporation losses.

Thus a small canal could bring a small flow (from the Souris River or from the Wissouri River Diversion) continuously, or through the major portion of such years as it could be spared. The water would be stored without too serious evaporation or seepage losses until the dry season or even until a following dry year or years. It could then be released when needed, in large quantities for short periods of time and diverted for the benefit of any selected portions of the lands north and northeast, toward and beyond Upham. The topography is well adapted for this. The total area that is adeppted to irrigation in this area, if sufficient water were available, is at least 30,000 acres.

MISSOURI
RIVER DIVERSION

In the event the Missouri River Diversion Project is installed for the primary benefit of the Sheyenne River Valley, James River Valley, and Devils Lake Area, a short branch canal could be built with a very small additional cost, to bring a portion of the diverted water to the side slope of the Souris River Valley west of Balfour or southeast of Velva. This would be at elevation 1600 or slightly more, depending upon the precise form of the Missouri River Diversion Project finally adopted. Due to the fact that during half the years there is deficiency in water supply nno during a quarter of the years there is a great deficiency for cither agriculture or stock feeding, twothirds of the Mouse "Loop", mach of the area east of Towner, and the Lower International Boundary Region vould be greatly benefited.

Althoueh the Souris is an international stream, the project would intruduce no international complications as it could easily be operated so as not to make the sliehtest increase in the flow of the Souris Piver except at times of medium low stage. At all such times the Canadians would be in need of the increased flow.

ELOOD CONTROL For the purpose of flood storage and complete release during hili RIVER dry seasons one or more large reservoirs, large enough to hold OMGULATION 100,000 acre feet or more, have been suggested. Topograyhy is best adapted for cach rcservoirs at points in North Dakota above Minot. However, such a reservoir wculc confict with the Biological Survey Migratory Faterfowl Reservoins now being installed. Furthermore, the part time flowage would ruin thousands of acres of the best bottom lands in the valley so it is douktful whether the benefits justify the cost if approximately the same results can be obtainec. by other projects. However, there are several good locations above the international boundary in Saskatchewan that are well adapted for this burpose. The canadians are desirous of having the projects adopted and rould pay a major bortion of the cost. They would operate them almost as exactly for our benefit as if they were in Iorth Dakota. The reservoirs vould be usod for detaining flood maters and releasing a smail stcady flow thereafter. if by wny cooperative arrangement these projects can finally be installed at some time in the future it nould be very desirable and they ought to be included in the rater plan.

The location of Minot and Volva on the river bottom lands causes them to suffer grent lases when the river is at the highest flocd levels. They roxld te groatly benofited by any plan for reducing flood hoigits, such as the building of lurge fle od detention reservoizs. Other projects such ns small channel rescrvoirs may reike the heights of miner floods bit cannot appreciaidy help furing larger floods. Levecs along the river banks at onch town are of some use and in former inece hera roen built along some shori secturn of the river in Winot. These assist in preventing minor floode from escaping the river chernel end flooding the streets ard beements. At Mirot, and similarly at Velva, oven with contimucas levees io give two feet additional channe? depth, the charrel capacj.ty in presert location and form would be oniy about zon cubic feet per second; hence it could not carry the larger flojes such es can be expected at abcut five year intervels. If overstopped at all, the levees would then not be of the slichtest use but rather would be a nuisance and injurious. Trus it is seen that this method cannot be relied upon for general relief.

At Minot, by cutting across channel loops at several points in the lower part of tae city and for some miles below, with cross
cuts merhens 15 feet feep, 80 feet wite, and 100 to 600 fest lnen, the channel rould be shortened and given greater slope. Hence, at comneratively small cost, heights of ordinary floods could be reduced one to several feet end the heights of extreme floods nearly a foot, wihtout the slightest danage to residents below. For these residents the zlood crest-height would not be increased at all but would merely reach them a few hours earlier.

A more extensive nroject for the same urpose , ,lans to excavote a relief cannel, through most of the C_{i} ty of Minot and for eight miles below, parelleling the present channel and of equal or larger cross sectional rea. This chaniel would be nearly straight and therefore scercely more than one-third as long as the pr-sent crooked netural channel. This would almost completely eliminata serious losces even from floods grenter than those yet experienced but mould cost about $\$ 1,200,000$. The project is described in fetail by a special report oi the State Enginear, R. F. Kennedy.

CHATMTEL OBSTITCTION

A vary necessary provision in future plans is that through Minot and for twonty miles below, care must be taksn to prevent the channel end its mergins from being artifically obstructed in eny ancreciable degree by bridge, buildings or earth work fills along the banis. The projects mentioned above are solely for the relief of Winot so that the initiative in putting into effect ony of them chould come from the people of Minot. However, these plens can properly be mentioned in the peneral water plan as they do no harm to enyone above or below linot.

There is a great need for the develorment of recreational areas and suitable whter facilities in this Sub-besin. Penville County, for examrile, hes reported only four places suitable for swimming, and at times during the year the water in the river is so low that these cannot be used. Bufialo Lodge Laise in McHenry County could be developed into a desirable recreetion spot if the weter flow was controlled. :AcFenry County now reports only 4 swimaing places, and the rater in these is of ten so low as to render the pools unfit for such purposes: Bottineau County has a series of small lries and streams which require a means of controlling the flow of water to make them useable for recreaticnal purposes. The water in most of them is at present too low for either swimming or boating. Rolette County reports only two places suitable for suimaing although there are many small lakes that only need to have the flow of sprinf flood waters controlled in order to make them suitable for recreational nurposes:
portent lakes, wre in greet need of additional wa.ter to properly serve recreationel needs,

In the "Fifteenth Biennial Report of the State Ergineer" Mr. R. Fi. Kennedy outlines a meihna for improving the lakes of the Thatle Liountains. This incluates a drainage ditch from Rost Lake to Lake Metigosine to r store the letter. Fost Iake mould not be destroyed brt mouid merely be lowered. The outiet to this ditch would heve a conircl faite so that during wet years additicnal water could be stored in Rost Lske to be used to maintain the level and decired freshness in Laine Metigoshe during drought $^{\text {den }}$ years. A roservoir downstram from the outJet of Lake Ietigoshe worid store any overilow ther-fyom and would serve as a waterfowl retuge. Lake Upsilon would be restored by creating a. resorvoir on Wainopa Creek which would serve to divert the creei run-off to Laize Upsilon partly by gravity flow and partly by pumping. Fuping from a small reservoir on Wakopa Creek into Jake Unsi.ion has beon carried on vary successfully and at low cost. The present reservoir is not of sufficient size, howevar, for fully restoring Lake Upsilon. Other pruposed developments incluad the addise of 5 square miles of arainage area to that tributary to Cerpenter Leire by constructing a ditoh 5800 feet long and ectineted to cost $\$ 7,000$ and by joiring Jrrvis and Long Lakes by means of a cenal estimeted to cost $\$ 2500$. This mould lower the water level in iner $\mathrm{I}_{\text {aze }}$ del feet and rould ras $₫$ Jarvis Laire one foot. The benefits woild be one large lake of about 340 acres, 8 miles shore line, and with four miles of boat travel. The everage depth would be about 12 feet.

The projects fur the improvenert of Leike Wetigoshe and Leke Upsilon can be undortaken imnediately, but before eny of the additional projacts are undartaken a detailed hydrological survey and study of the probable available water for the verions lazes should be undertexon. Future progrems of construction should be plenned eccording to the findings of this survey.

BIOLOGICAL SURVYY

The U. S. burean of Biological Survey has three large waterforl remges in the Souris kiver 3asin. Two of these are on the Souris River, and the otror is a development of the Dos Lacs Lekes. The series of rescrvoirs comprising the Des Lecs Laires project heve ? water suricee of 6,300 acres ans. store 15,600 acre feet of weter. The Lower Scuris Froject, on the Scuris Fivar from Jpham downstream to the internetional boundery, inclades n series of smell dams creating morsh and lake arens hoving a totai water surface of 30,000 acres and a storage crpacity nf 60,000 acere feet. The Unper Souris Praject is locnted on the Souris River northmest of Minot in Mard ard Fenville countics and has a veter surface of 16,500 acres and o. stornze capreity of 214,000 acre foet. Of the total storofe, 119,000 ncre feet is created by n em ot the inerdRenville county line.

The Des Lacs and the lower Souris Exject are of use prinarily for waterforit refuges althcugh the recectional facilities are greatly increased, particularly in the Des Lacs Lekes. The Tpper Souris project kosever, will have great flond control and river regulating bencfits. Indeed, the large reservoir provices apmoximate"y une-rigif the necessary flood control gnd river regulating storage necessary to prorine the greatest henefit to the valley beiver rinis feature is incidental to the regnlation of the flom by the 3ic? escei Gurvey to mitnterin a constant leval of water in the marshes of both the Upper Souris and Lower Souris projects.

TTE REHABILITHTYON CORPOPATION PRSECT

EXISTING
SMALL TAMS

The North Dakote Rehabilitation Corporation has constructed a dam at Burlington on the Des Lecs River vhich impornes 320 acre feet of water, 250 acre feet of which are used for irrigating the Burlingten subsiztence homesteal project by gravity flow. A number of smail plots of land have been equipuad with buildinas and have been sold to femilies which use the areas for intensive farming to supplement their vinter work in nearby lignite mines. In suite of a very damasing hailstorm during the current sumner this project has proved very successful during this, its firgit year of operation.

There are approximately 165 small dams in the Basin. These were brilt by tarious agencies. Their total storage capacity is approximately 11.000 acre feet. These small reservoirs provide recreational facilities for mary localities. Ciney also proride stock watering fucilities and assist in maintaining waterfow nesting areas in the recion. These are listed in TEble A and are shown on Plate II.

THE TAT:3R PROBLEM

In years past there have been frequent demaging floods along the Souris Fiver particularly at Hinot and Velva. These floods occur during spring trank-ups and have cansed corsideatale damage at times. Laxing summer months the flow in the Souris Piver is vety low often becoming less than 2 cubic feet per second for a period of from one to two months. As a result sewage discharged into the stream is not sufficiently diluted. The large U. S. Biological furvey reservoir at present maintains a flow through Minot durire sumer moinths and tlis greatly alleviates the pollution problen. Strear. regulation durir 3 winter months is also needed, however. There is also a need for irrigation projects, improvements in semege disnosal and water supply, and some additional siabll dams for recreational purposes.

THE TATER

 PLANFor flood protection and river regulation it is proposed:

1. That a survej and stady be undertaken immediately to work out an qgreginet with the Saskatchewsin government whereby, in return for the paymerit of pars of the cost of three large power rescroirs on the hegdwaters of the Souris River, as proposed by them, these reservoirs mould be operated to our ad-
vantage as flood control and river regalating reservoirs. Estimated cost of this survey and sudy is $\$ 10,000$. Tinese reservoirs together with the already constructed Biclogical Survey reservoir on the Somic River, ?hich has a canacity of 112,000 acre feet, would give ample fiond rrutection and stream flow regulation. These reservoirs mill provide d. storage capacity of 125,490 acre feet at an estimatrd cost to the United States of \$125,000.
2. That a plan for straightening and improving the Souris River Chanel in Minot be sarveyed and designed. The cost of the survey is estimated at ${ }^{*} 5,000$.
3. That the channel straightening and improverient in Minot be undertairen and completed at an estimated cost of \$250,000.

For inriggation it is proposed:

1. That a dam be built on the Des Lars River and another in Larsen's Coulce above the Burlineton Raral Rehabilitation Cornoration project to nrov de reserve storage capacity for irrigation of this project. Cost is estimated at $\$ 50,000$ with 320 acre feet of storage.
2. That numarous individual irrigetion systems be installed in the sand hill area of the "Mouse Eiver Loop" using challow wells for supily. Such wells will irrigate 10 to 20 wres per farm and on this land the farmer may gow hay and fecd during drought yenrs. An estimate for irrigation for 100 to 200 farms is $\$ 100,000$.
3. Thet an additional flood irrigation dam be constricted in the Souris River in the vicinity of Towner to insure winter feed during diought jears.
4. That a hydrolozical stady of tre Souris Fiver be made to determine that additional irrigation projects could be sumplied sith sufficient wroter after present and proposed uses as listed above ure provided for.
5. That a detailed sill survey and land classification be begun as son ε as is possible on all lands that anpeer to be irrigable in order th arcertain the suitability of the lands for irrigation in each of tre several areas. These surveys should follow the aerial maroirg of the irrignble regions. Tins mapoing. will provide, in addition to its utility as the basis of the proposed soil suriey and lan"-clensiftection, much noceree data on present land use. he cosi of the afrial mapning would aporoximate 5ϕ per acre. The co't of the detziled soil survey and land
classification would be an additional 5ρ per acre.
6. Thet irrigation projects found feasible in the light of the two surveys listed above be constructed.

All towns needing improvements in their rater supply and sewage dispossI systems should be given assistance in developing adequate facilities, Pronosed Improvements are listed in Table B and C and are shown on Plate I.

It is proposed that additional small dams having a total storage of apyroximately 15,000 acre feet and costing $\$ 250,000$ be built in the Basin to provide recreational facilities.

It is further proposed:

1. Thet projects for the restoration of the Turtle Mountain Lakes.as outlined by Mr. R. I. Kennedy, be constructed.
2. That a number of auditional smail dams be installed where needed for recreational and 6 ther purposes. All dams constructed hereafter in the Sub-basin should be provided with outlet gates for releasing the water stored when a great need arises for it downstrean or when it becomes so polluted that it is a definite health hazard to the community. Mony existing dams should also be provided with outlet gates. The small dams, including the Turtle Mountains development, are listed in Table D and are shown on Plate II.

EURAI

A large number of small reservoirs have been proposed for the Sub-basin by various agencies. Those that, would serve purposes of recreation, irrigation, and waterfowl refuges have been included in the proposed program. It is proposed that before any more small dams for stock watering purposes be constructed in the Sub-basin, a detajled survey of rural rater supply be undertaken to ietermine the best and most economical method of securing adequate and astisfactory water supplies for stock watering purposes. Where an adequatc ground water supply is available it is probable that this would be through the construction of community rells. In other localities not having a reliable eround waier supnly the construction of surface reservoirs would be the only alternative. Follnwing such a survey it is proposed that assistance be given in developing an adequate rural water supply.

Active weather recording and stream gaging stations are shown on Flate III. No additional stetions of either type are included in the proposed program. but it is strongly urged that all existing stations be mainteincd.
TABLI A

tABIE A (Cont'd.)
EXISTING RESFRVOIRS
SOURIS RIVER SUB-BASIN
U. S. BIOLOGICAL SURVEY "DES LACS LAKES MIGRATORY TATERFOML REFUGEIt:
9,000
Total of "Des Lacs Lake Migratory Naterfowl Refugen Roservoirs
(Reservoirs 11 to 19): $15,600 \quad \$ 79,600$
Lake:

EXISTING RESTRVOIRS
SOURIS RIVER SUB-BASIN
TABLEA A (Cont:d.)

("ps quo,) V atc:vi

No.	County	Soc.	Twp.	İce.	Storace A. F.	$\begin{aligned} & \text { Cost } \\ & \text { Es'... } \end{aligned}$	Use	Desisnation	Description and Ronarks	Legond
156.	Burise	31	161	89	10	\$ 1,000	IV	F	Dan-Mroelk.	**
157.	Durke	36	162	92	75	7,000	IV	P	Dan-Creek,	**
158.	Trurke	24	162	92	20	2,000	IV	F	Dam-Creek.	**
15.	McFienry	33	156	79	95	7,000	IV	P	Daun-mCoulee. Near Granvillo.	(*) ${ }^{*}$
160.	HeHenry	16	156	76^{\prime}	14	1,400	III	E	Dern-Souris River, At Tomer.	*
161.	McHenry	23	159	76^{\prime}	25	900	IV	E	Dan--Oak Croek.	*
162.	Mchonry	3	151	$79^{\text {V }}$	80	8,000	VII	\#	Halverson Das-- Fintering Riveru	*:****
163.	lichenry	30	154	78 V	9	1,300	VI	E	G. N. Dari..-Souris Piver. At Vorondryc	***
164.	McHenry	4	153	77^{2}	30	3,000	III	G	Karlsruhe Park Dra-mintering River.	**
165.	McHenry	14	159	808	40	4,000	III	G	Pratt Trpp. Dan--Deep River.	**
166.	lichonry	21	159	76	30	3,000	III	G		(**)
167.	Mchonry	$\begin{array}{r} 13 \\ \text { to } 23 \end{array}$	$\begin{aligned} & 157 \\ & 156 \end{aligned}$	$\begin{aligned} & 75 \\ & 76 \end{aligned}$	10,000	100,000	II	E	Hardy Flood Irrigation Project on Souris River. To irrigate approxinately 8,000 acres of hay land.	*******
165.	Wichenry	$\begin{array}{r} 21 / 28 \\ 33 \end{array}$	151	76	2,000	10,000	VII	F	Cottonmood Lako Project	*****
169.	Di.vido	5	163	97	б́	400	IV	卫	Dear--Lung Creok.	**
\cdots	Wride	10	162	95	20	4,200	IV	F	Dan--Coulce.	**

TABLE A (Contid.)
EXIETING RESETVOIRS
SOJRIS RIVER SUE-DASIN

Nan	Countr	Sec.		Rec.	$\begin{aligned} & \text { Srorage } \\ & \text { A. H. } \end{aligned}$	$\begin{aligned} & \cos t \\ & \text { Esto } \end{aligned}$	Use	$\begin{aligned} & \text { Jocig } \\ & \text { netion } \end{aligned}$	Dosoription and Ronerks	Logend
171.	Divide	8	163	98	15	\$ 1,500	IV	F	Dein--Crecir。	**
172.	Divide	22	162	97	25	2,500	IV	G	Dan-Croek.	**
173.	Divido	29	162	96	100	10,000	IV	F	Dan-Coules.	**
174.	Divide	1	163	96	100	10,000	III, IV	E	Dan-Long Creek.	*
175.	Divide	25	154	98	100	10,0:30	III,IV	E	Dar--Long Croek.	**
${ }_{17} \mathrm{~F}_{6}$	Divido	3.5	164	98	180	18,000	IV	F	Dear-Grook.	**
177.	Divide	31	164	95	35	3,500	IV	G	Darr-Long Öroekn	**
178.	Divide	26	163	93	7.50	15,000	IV	F	Dar--Coulse.	**
179.	Divido	2/1	1.03	97	200	20:000	IV	F	Dan -Long Creeko	**
180.	Eolotte	30	163	73	3,000	5:000	$\operatorname{IIIT}, \text { IV }_{\text {III }}$	G	Dar-Cut1et to Willow Lake.	*****
181.	Rolette	26/9	163	72	500	5,000	VII	G	School Section Lake Project.	*****

Flood Control and Strean Regulation

USE: I II III IV VI VII VIII

$$
\begin{aligned}
& \text { Irrigation } \\
& \text { Recreation }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Stock Watering } \\
& \text { Railway Supply }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Kecreation } \\
& \text { Stock Fatering and Water Conservation }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Railway Supply } \\
& \text { Faterfowl Refuge }
\end{aligned}
$$

Industrial Use

TABLE B
PROPOSED IMPROVEMENTS IN WATER SUPPLT

SOURTS RIVER SUB-BASIN

$\begin{aligned} & \text { PLATIT } \bar{T} \\ & \text { MAP } \mathrm{TOO} \end{aligned}$	$\begin{aligned} & \text { Municip- } \\ & \text { ality } \end{aligned}$	Pop.	Objection to present supply	Proposed Improvoments Surveys	Wcll ${ }^{\text {a }}$	Treatment Plant	$\begin{aligned} & \text { Dist } \\ & \text { System } \end{aligned}$	Total Estimate
1.	Ambrose	234	Inadequate	Survey and 1 well 100	600			700
2,	Antler	318	Inadequate	Survey and 2 wells. 100	1200			1.300
3.	Berthold	511	Unsatisfactory. Inadequate	Survey and 2 wells. 100 Distribution system and Treatment Plant	1200	15,000	20,000	36,300
15.	Balfour	197	Unsatisfactory. Inadequate	Survey and 1 well. 100	600			700
5.	Bottineau	1322	Highly mineralized.	Treatment Plant		10,000		10,000
6.	Crosby	1271	Danger of Pollut- ion. Inadequate, Highly minẹralized	Survey, 2 mells and . 100 Treatment Plant. Construction changes.	1200	10,000	2,000	13,300
7.	Columous	516	Inadequate. Danger of pollution.	Survey and 2 wells. . 100 Distribution System。 Construction Changes.	1200	15,000	26,500	14,800
8.	Dat Lacs	205	Unsatisfactory	Treatment Plant		10,000		10,000
9.	Deering	192	Inadequate	Survey and 1 well 100	600			700
10.	Danseith	1:8!	Inadsquate	Treatment Plant and Distribution System.		15,000	20,000	35,000

TABLE B	(Contld)		$\begin{array}{r} \text { PROPOSED_IMPROVEME } \\ \text { SOURIS_RI } \end{array}$	NTS IN WATPR SUPPTY ER SUB-EASIN				
$\begin{aligned} & \text { Pruivi } \\ & \text { WEP No, } \end{aligned}$	Municip- ality	Pop	Objuction to Present Supply	Proposed Improvements Surye	Wells	Fraatment Plunt	Dist. System	Totel Fstimate
20.	Minot	16,099	Highly mineralized. Denger of pollution.	Treatment Plant. Remove wells from. the pits end re.pair storage tark.		20,000	5,000	25,000
21.	Hugby	1,512	Unsatisfactory. Danger of pollution	Remove wells and pumping equipment from pits. Treatment plent. .		10,000	3,000	13,000
22.	Rolette	1128	Inadequate, Danger of pollution.	Pump covering, Distribution System and Treatment Plant.		10,000	100	10,100
23.	Souris	$2^{2}: 8$	Inc dequete.	Survey and I Fell 100	600			700
$2^{\prime \prime}$.	Sherwood	155	Inedequate. Unsntisfactory.	Survey, 1 mell, Distribution swstem and Treatment Plent.	600	13,000	17,000	30,700
25.	Tagus	136	Inadequati. Unsatisfactory.	Survey and 1 7oll 100	600			700
26.	Tolley	285	Inadequate	Survey and 1 well 100	600			700
27.	Nemburg	87	Inadequate.	Survey and 1 mell 100	600			700
28.	Overly	15'	Inedequate. Unsatisfectorer.	Survey and I rell 100	600			700

SOURIS RIVER SUB BASIN

$\begin{aligned} & \text { MIAREITI I } \\ & \text { MAP NO: } \end{aligned}$	Munjeipplity	Pone	Objection to Present Supnly	$\begin{aligned} & \text { Pruposed } \\ & \text { Improvenents Sur } \end{aligned}$	Wolle	Theatment Plant	$\begin{aligned} & \text { Dist } \\ & \text { Systom } \end{aligned}$	$\begin{aligned} & \text { Total } \\ & \text { Estimate } \end{aligned}$
29.	Portal	512	Inadequate. Unsatis.• factory.	Survey, 3 wells, $\quad 100$ Distrịbution systeri and Treotment Plant.	1800	13,000	17,000	31,900
30,	Ruso	104	Inadequate	Survey and 1 well 100	500			700
31.	Thorne	38	Inedequate	Survey and 1 yell . 100	600			700
32,	Velva	870	Inadequate	Survey and 3 wells. 100	1800			700
33.	Willoy City	577	Unsatisfactory	Distribution System and Treaiment Plant.		13,000	17,000	30,000
3\%.	Westhope	521	Unsatisfactory.	Distribution System and I'reatment Piant.		13,000	17,000	30,000
35.	Saryor	206	Unsatisfactory. Inedequate	Survey and 1 vell 100	600			700
			Sub-Totals:	2,500	22,200	207,000	187,600	

$\$ 2,500$

130,600
35,000 (14) +i~

USE Distiteding 3 , teas

Trestmont; rant,
Toteil ilums iiot Puojectso

30,000

40,000 000° G红
40,000

35,000
000 - 0° \&
TABLE C (Cont'd) PROPOSYD IMMROVEMEND IN SEWAGE DISPOSAL

SOURIS RIVER SUB BASIN

PIATi I Type and Adequacy Proposed Estimated MAP NO.

CLASS "C" PROJECTS IN PLAN NOT INCLUDED IN CLASSES "A" AND "B":

Comb,-Septic Tank. Inadequate;
Comb.--Septic Tenk. Iñḍequate. Comb.:Septic Tank. SloB. . Comb, Soptic Tank, Inadequate,

No Severage System
LEGEPD FOR SHETGCE SND SEHTAGR TREATMENT:
No Sewerage System
Combined System
Sludge Bed
System and Treatment Plont
System and Treatment Plant

PROPOSED IMPROVEMEINTS IN USE OF SUPFACE WATER RESOURCES
SOURIS RIVER SUB-BASIN

PROPOSED IMPROVEMENTS IN USE OF SUEFACE WATER RESOURG
SCURIS RIVIR SUD-BASIN

\$287,900
TABI
TABLE D (Contid.)
SOURIS RIVER SUB-BASIN

PROPOSED I:MPROVERENTS IN USE OF SUREACE WATER RESOURCES

SOURIS RIVER SUP-•BȦSIN

SOURIS RIVER SUM BASIN

850,000
29,200

$\$$
TABTHE E
CIASS "A" PROJECTS DEMANDING IMMEDIATE ATTENTION:
CLASS TR ${ }^{\prime}$ PROJFCTS IEMANDING IMMEDI ASTE ATTENTLON UPON COMPTMSION OF STJRVFY:
SOURIS RIVER SUE-BASIN
PROPOSED PROJECTS
$\$ 217 ; 100$
345,000
287,900

$$
\begin{array}{r}
22,200 \\
7,000 \\
\\
\\
780,000 \\
320,000 \\
882,500
\end{array}
$$

DOMINION OF
CANADA

CHAPTER H

devils lake sub-basin

CHAPTER II

DEVILS LAKP SUb-BASIN

IIURAL RAINAGE

Devils Leke occupies, in Drrt, the verv irregular depression immediately to the snuth of the city of Devils Lake and along the south edge of Ramsey County, The tributary drainage area is located in the midst of the Drift Prairie of Nortin Dakota, a region transitional between the Prairies of the Midmest and the Great Plains, and includes most of Ramsey County, a large part of Tormer County, and smaller parts of Folette, Benson, Nelson and Cavalier Counties. The area draining to Devils Lake, most of which is north of the lake, is 3406 square miles end that to Stump Lrke is 410 square miles. This is considered as one basin in this report.

There is no marked surface drainege in the Sub-basin but such as there is is southrard to Dovils Lake. The slight slope, the irregularity of the surface, and the porous character of the drift causns most of the raters rhich reach Devils Lake from its interior drainage basin to reach it by underground seepage, the weters moving slo:ly down the slope from the north, through the sandy portions of the rrift an : over the impervious floor of the blue-grey shele beneath.

The total nopulation of the Basin according to the 1930 census reas 41,323 persons of rhich 26,681 resided in rural areas and 14,642 resided in incorporated cities or villages. There were but four to:ns in the area fith a population in excess of 500 in 1930. Devils Loke had 5,451; Cando had 1,164; Leeds had 725; and Bisbee had 531.

The number of persons receiving relicf in the Sub-basin during the peak month, March 1935, was 10,04 _ or 243 per cent of those residing therein. This compares rith a state average for the same month of 31.6 per cent. During the peak month of \mathbb{W}. P. A. employment 631 nersons Fere employed on work projects in or near cities and villnges and 1743 persons were employed on rural projects, making 2 . total of 2374 persons cmployed in October, 1936.

The problem of rater for human consumption in the Devils Leke Sub-besin is not acute. Bocause of the nature of the terrain a larger part of the moisture which falls on the area is absorbed by the soil then in other locelities. As a result the sub-surface sources of veter are good. Farms and small towns readily obtain their water supplies by tapning ground reservoirs in gravel pockets or in sand veins in the Pierre Shale at a depth of 60 to 400 feet. Although the latter source is ample for modernte demends it rill not furnish a sufficient source for a city such as Devils Lake as far as present information indicates.

Devils Lekc has a vater problem in the its present supply from en artesian vell is very salty. A more satisfactory source is sought. Several small torns notenbly Minnermaunn, hnve a matrer supply of unsatisfnctory quality. In the case of Minnewaukan this is due to its proximity to the old lake bed where weters absorb much filkeli beforo sceping to the voin from which the town receives its supply.

AINAGA, CODS \& TREAS GGULATIOT

IOLOGICAL URVEY

IDD IIFE

VILS LAKI

There are no drainage orobleme or projects as such in the Suio-basin althongh some individuel land orners have installed ditches to provide dreinege for smell trects of mershy hey lends. The many small lokes eerve as notural detention reservoirs retarding the spring run-off and thus preventing floods along the streans and couleos of the area. A large part of the run-off ronching these lakes docs so during the one or tro months of spring break-up. There are no streams in the Sub-irsin serving a sufficient drainage area or having stornge possibilities sufficient to make regule.ted striam flov fensible.

The U. S. Bureau of Biological Survey is at present engeged in the restoration of severnl lakes and mersh areas in the Subbesin for use as migritory raterforl refuges. The lirgest and most inportant of these devolopments is that on Leko Alice, just northenst of Churchs Ferry, which rill have n verter surface of 3,462 acres. Another project is thet of improving Plensent Lnike in the northeast corner of Benson County by the construction of n dnem it the outlet. The wetor surfece rill be 490 ncres. A third proiect is thet of restoring Billings Lekc, a few miles south of Lome, to a miter surfece of 130 ecres. The development in ench enso is a diem o.t the outlet of the leire thet vill increase the storage of spring run-off in the loke.

The Dovils Lake Sub-basin rith its many lokes nod marshes probebly produces moro migro,tory watorforil then any other area of equal size in the stete. The Biologicel Survey projects under construction will maturially holp to maintain and parhaps incrense this production. Another project thet should be undertaken is the construction of a spillway under the bridge on the road which crosses Prosey Slough on the section linc along the north side of section 27-156-61. This spillmy moula raiso the level part of the slough about tmo fcet. The road mould be used as the dam. It hes boen proposed that a din bo built n.t the outlet to the slough but the tributery drainege aren is too smell to support the entire slough. Horever, it would probably support the portion above the proposed spilluy very rell. The cost of such construction would be meterially less then Ω dam at the outlet.

Dovils Lnke wes formerly one of North Dekote's most bearatiful lokes. In 1857 it had an area or 142 saunre miles nnd wes nearly 40 feot desp. Sincs thet ine it has steedil:, nlthough
irrogularily, declined in aros and depth until st present it covers en eree of nerhens 30 square miles to 0 depth of from a fer inches to a. meximum of perhaps 7 foct. Thers have been nany contributary factors to this declinc of Devils Lake but the largest single factor, perhaps, is the plowing up of the native sod end the growing of cultiveted crops thus retarding mun-off and incroasing evaporation from the ground surface and the tronspiration from plant life.

Dovils Leke at onc time supported abundent fish life but the rmetor has becom: such that only E for fish live in it. Thero are unfit for humen food. Other lakes in the area are too slallow to support fish lirc.

RCREATION
Creal Bay extending north fron the main body of Devils Loke in Sections 7 and 18-153-64 and into section 13-153-55 formerly vos used for swimming and bonting. In 1934 the mater in this bny was condcraned for suimming purposes and the cottages and the Lekerood Chateugua grounds olone the enst shore of the bey in section 18 heve become precticelly northloss. Feoplc in Devils Loke propose to construct ε dem nlong the south linc of section 13 and another in the north ond of section 7 so as to enclose a portion of this boy nad fill this cithre by pumping from the main vody of Devils Lake or from an artosion well put down for the purpose. While this project wonld be desirable to restore the velue of the adjecent property and also to provide recreational facilities for the people of Devils Lake the cost of sucin a project would probnbly be muck. greeter tinen the benefits derivod. Other objections are then on artosien well would not givo sufficient flov to mantain the eveporation or if wnter were pumped from Devils Leke it mould probably not bo accepted by the hoelth department. Eowever, before a definite conclusion is reached a roorc detailed study should bo underteken.

Thers are a number of recreational arees in the Devils Lake Sub-basin. Some of these are quite well developed at the present timcut others should have some work done on them to best serve the surrounding areas. Devils Lake is constructine a swimming pool at the camp grounds south of the city. There is camping and recreational facilities, along the lake in Trp. 154-54. There is some swiming in Streetwater Lake several miles north of Devils Leke but some work should be done to develop the possibilities. There is a natural park and camping place a.t the tom of Pleasant Leke. Here there is a frosh reter lake and iloming springs. This lake is being raised by the U. S. Eiological Survey. Food Lake, in tomship 15l-64 supporte a summer resort rith cottages, stores, and a pavilion. There are many trees around this lake. Thre is good strimming and camping at a small lake near Sullys Hill Park in township 152-64. Leeds has a municipal swimming. pool thich is filled b:t an artesian woll. There is suimming in the rescrvoir a.fer milcs north of Minnewaukan during part of
each year. A dar. was constructed across Rock Lake in section $28-162-66$: by F, E. R. A. and the Biological Survey. This dam divides Rock La'se and causes the soutin portion of the lake to raice and overilow to the south rather than to the nortin. This is an excellent recreational spot. A dam in Boulder Creek several miles test of Grocus in section 17 or 18-160-66 mould create a. fine reservoir for recreationel use of the surrounding are a. Another dar ili a creek in section $13-158-69$ would also produce an excellent recreational spot. Silver Lake Fas formerly an excellent recreational center but has been dry the past 7 years. The flood waters of a nearby coulee could be diverted into the
 Lake could ale- be improved for recrestional purposes making an excellent spot for camping and swiming.

Te restoration of the recreational value of Devils Lake can only be realized throng!l some method of bringing in vatir from outsice the dreinege aren to restore the lake and support evaporation therefro:!, The florr in the Sheyenne River or the Souris River is so small that probebl:/ onl" enough rater could bediverted to maintain evaporation from the present loke surface. The only available source of a large quantity of water for the restoration of the laxe is the Missouri River. Several methods of diverting 'ator to Devils Lake from the Missouri River have been proposed.*

Therc is no possibility of replenisnment of Devils Lake from netural precipitation in the Sub-basin. This is already completely used by eveporation from shallow lakes and earth's surface and by transpiration from plants. Small canols or ditches could be dug to drain some of the cmall lakes and swamps in the area and carr their rater to Devils Lake. This ould result in only a very small increase in the level of Devils Lake. It rould be detrimental to local needs in that it mould destroy local la'os not used for recreational and other purposes and rould also probably lower the ground ratcr somerhat in these localities. Indeed the opoosite proceedure seems to be desirable. Several small dams should be built to create reservoirs for local necds. This additional stornge outside of Jcvils Leke in the Sub-basin would tend to decrease the inflow to Devils Lake.

[^0]GOGGESTED
WHODS OF
ERLENISH-
NG DEVILS
$A K E$

OURIS RIVER IVERSION

Five different methods for replenishing Devils Lake have been suggested. These are: 1. Diversion from the Souris River; 2. Diversion from the Sheyenne $R_{i v e r ; ~ 3 . ~ P u m p i n g ~ p r o j e c t ~ u t i-~}^{\text {2 }}$ lizing waters froin the Missouri River; 4. Diversion from the Missouri River by means of a high dam, canals, and tunne!; and 5. Diversion from the Missouri Fiver at river elevation or with a small dam by means of canals and tunnels.

The first method, that of diversion from the Souris River at some point between Minot and Devils Lake, has been surveyed and found feasible from an enginearing standpoint. There are, however, several objections to this project. During ordinary years the flow in the Souris River is so small that during most of the year none could be diverted from it. Although there are some periods of good flow and occasional disasterous floods, these emount to but a fer months out of each 20 year period. The plan would be ineffective for anت satisfactory replenishment of Devils Lake unless the canal, gates, and reservoirs were made so enormous as to make the expense prohibitive for the benefits derived.

FHIENNTE IVER tIVRSICN

The second method involves the construction of a dam on the Sheyenne Rivor directly south of Devils Lake. The reservoir pould have a storage capacity of 27,000 acre feet and would cover 2,100 acres. The total drainage area would be 1,700 square miles. The average annual run-off would be approximately 36,000 acre feet. The maximum annual run-off mould be 90,000 acre feet, and the minimum annual run-off would be about 2,000 acre feet. The present net evaporation from Devils Lake is approximately 24,000 acre feet per yoar. If the entire flom of the Sheyenne River at this point were diverted to Devils Lake it would meroly serve to raise tho lake level a fer inches and would not materially increase its vilue. Moreover, a large pumping plant would have to be operated continuously with an average lift of approximately 50 feet.

There would probably be serious objections, made by people living downstream, to the diversion of any water from the Sheyenne Rirer. The Sheyenne River has a very small flow through at least five-sixths of each year, less than 20 cubic feet per second, and only a few cubic feet per second during at least half the year. The river flow mould be diminished by the filling of the reservoir during the few weeks of flood flow in each year. During this time the inhabitants in the valley below vould not need the water and would perhaps prefer a reduction in the flow. However, if the Baldhill Reservoir is constructed this flood flow will be needed to fill it and insure stream flow repulation for the rest of the year.

The objections to diversion from the Sheyenne River are that no real benefit would be derived, the operating as well as the

DIVIRRSION

 FROM MYSSOURI RTVER BY PUESTNGDIVARSTON
FROM MIS-
SOURI IITVRP BY HTGA DIH
instran cost mould be excessive, and the water available in the Sheyonneliver is needod for stream regutatire purposes to be accomplished by the prorosed Reidifill Heservoir.

The third proonscd plan cills for a huge punping plant at the nearest point of the Misscuri fi.ver, ajout lilo miles away, to pump weter ncross the continentel aivide into Devils Lake to refili it and supply the insreased eveporation. The lift over the irtervening ridye woild bo eproximetely 400 feet. In addition to the origincl cost, astimeted at $\$ 0.4,000,000$ this plan woul. involve additional costs for operation of the pumping plat
 entrged direxsjon from tho kissouri Fiver rould not be fersible from in econcmic isentuist.

A fourth plan includes the building of an earth fill wapproximately 150 feet high on the hissouri River near Garrison. This rould back the ater up Garrison Greek es far as it was economical to dredige a cesai。 zrom tha point n tunnel about 20 miles in leneth wald cemy tho wnir throwe the continental divide and wotid orcree on the eastern side of this ridge at a height thet would :llow the weter to flow rendily into the head raters of the Sheyenne River and also, through compratively simple crnals of not very great depth or a fer short timels, into Dovils Lrke, into the Jemes River, rnd into the Souris River if desired. This prosect is funp described in the printed roport to the Nissour: Rivor Ziversion Association of Devils Lnie, North Dakota, submittad by Durns and McDonnell Engineering Company in 1005.

The lake formed by the dem in the Sissouri River Valley would extend upetrean ejout $25 i$ miles te miliston and it rould be sevcral miles aide afong macis nt its ieneth iho totel ater sur-
 monld be ruproximitely $10,000, \mathrm{f}$ ecre feet, This reservoir mould provide a means for regule.ting the flow and lessening the flood danages of the river belor:

Because of its regulating features this reservoir would not be kept at a uniform olevation but the head ot the dam rould vary from 50 to 140 feet. Mris would not be satisfactory for the development of pover nor would it permit the use of the lake for navigation because the constantly changing shore line woula prevent. the erection of auitable piers.

The total cost of the 3 issouri River Diversion in this form has been estimated at frum $\$ 05,000,000$ to $\$ 30,000,000$ of which almost 75% would be for the dan and power heuse. It has been proposed that 3 power houre cepaile of developing 40,000 horse
power placed at the dam. As noted above the variable head available would not make the development of porer entirely satisfactory. Some income from the sale of nower rould be derived but it is cuestionable, even after the doriand was fully developed, Thether the total income rould par the intorest $\because n$ the cost of the dan.

The lake mould cover thousends of acres of the best bottom lands on both sides of the Missouri River for half its length in North Dakota.

The chiof objcction to the builaing of such a large dam is the uncertain founation conidions wich are clav, shale, and soft sandstone. The dem could ke kuilt presumebly sefe, but, if it should ever fail, the suiden rolease of so cnormous a body of mater rould be such a stixpendous disaster that it is not pormissable to run such a risk. The U. S. Army Engineers Corps have investigeted this project and have reported unfavorably because of this considoration. This is contained in their report "James River, North Dakote and South Dakota", House Document No. 83, 73rd Congross, lst session.

ORIGINAI
HiISSOURI
RIVER
JIVERSION
PLAN

The fifth plan is thet orinally sugeested at least a dozen years ago for the diversion of rater from thc Missouri River. This method is iree fron the dengers and objections outlined for that above and could be constructed for one third or at most one half the cost of the high dan project. This olan seems entircly feasibls althougi: the initial cost would be very great, probaioly \$30,000,000.

This project is primerily for the benefit of the Sheyenne and James Rivar Valleys. Great bencfits would also be derived by the Souris River Vallcy and also by the town on botin sides of the Red River from Fargo-hoorhoad north. Tie refilling of Devils Lake is but a cmell nert of the total benefit that rould be derivod from the project.

If this plen rire adopted rater rould be divorted from the Miscouri River at a point found to be most practicable, probably in the vicinity of Garrison, North Dakota. A series of canals and tunnels mould carry it northeastward then eastrard and southeastward onto the shoulders of the Souris, the Sheyenne, and the James River velleys. A pert oi tnis mater would be diverted from the Sheyenne Fiver to Devils Lake by gravity flow and rould raise the level of tine lake and provide for the increased evaporation from the lerger area.

The direct straight-line iistance from the Missouri River bend south of Garrison to Devils Lake is 110 miles but tre
course the rater mould take would be nerhaps 130 to 140 miles in lengti. The low water elevation of the Nissouri River is ebout 1,090 feat and the present elevation of Devils Lake is about 1,410 feet. From this it is anparent that there is sufficient fill even if the water is diverted at natural river level. In this case about 40 miles of the diversion mould be througl: a tunnel having; a trov of 3 fect por mile.

A modification of this plan woulc include a dem of a height of perhape 40 feet. This rould probably be preferable. A decreasc of 5 milcs in length of the tunnol fould partly compensatc for the cost of the das. The additional elovation obteinable at the outlet of the tunnel :ould moke it easier and less expensive to load the iater to the deisred points of use; northeast, caut, and southeast. Suck a dan rould bc in line rith the tentative program of the U. S. Army Bnginenrs caliing for a surios of such dems on the Wissouri River. if the tunnel had a diemeter of 18 feot, it corld cariy anproximately 1500 cubic feet per socond. If tiull flow wore cerriod auring one third of tho yonr fid half flow during et lenst another one third of e yonr the tunnel coula bring merc than 500,000 acre foet per ycar to the erens of need. Tith its prosont shrumen arci D.vils Lako mould be raisen ono foot anmunly rith only 5% of this inflo::. Even at the level at which Devils Like stood 50 yeors ago approximately 17% of this annual inflov vould rajse its elevation one foot. Only 12.5% or 52,500 acre fect rould be roquired to provide the net annual ovaporation at this lavel. It is probably not desirr.ble to reisc the lake eren es high as this becruse of grently increaser prop-rty daragu. Eounlly great benofits could be derived by mising it to n lowr elevation then this, perhaps 20 feet above the present levol.

Devils Lnke mould assist in tho adventageous operation of the entire project. During pariods rhen the flom nos not needed clscohere and during spring floods in the streams, the entire diverted illow could be dirseted into Devils Lake and net periods Whon the reter ins roeded elecuhere the flor into Devils Lake could be stomped and the :ater directed thereto. Tho water of Devils Lalre not contains more dissolvod solids then does sen water.

The diversion project rould ba particulerly beneficinl if it included such short cinnls and tumels as muld enrry renter from Devils Lake into Sturp Lake and from Stumn Lake into the Sheyenne Fiver. Devils Lake would then be ultimately freshened to such an extent os to be satisfactory for a rater supply for Devils Lare. Fish rorld thrive in the lake and rild fovl would be present in great numbers. The area ․ould become a sreat recreationai center for the fintire state and rould profit greatly fron tourist trade drarn to the area ry the lake.

Abstract

The U. S. Ariny Ingineers Corbs are ; t rresent moking surveys to detrermine tine estimeted cost of diversiou at river lovel and of diversion by means of a 100 foot dom and to compare the costs and berefits of these with those of the 180 foot dan project with a viem to detrraining the bust methoal diversion. Reliable esti ntes rill, therefore, soon be aveilable. For ourposes of this report it is sufficicat to sstime the total cost at betroon $\$ 2 \overline{5}, 000,000$ end $\$ 35,000,000$ and to stiete thet only a fraction of this should be charged to the Devil.s Lrke Sub-basin becauso of the great benefits the tould bo derived over a rico t.rritory.

gRIGATION

AVIGATION

TORAGE hacIlities

ATGR POTER
Irrigation is not practicod in the Sub-basin because of the necessit; o. a large rmunt of purying to meko meter avilablo vhere it is needed for such purposes. If water were evailable at hifh elevetions, as it moll be in the caso of Missouri River divcrsion, large tracts would doubtloss be irrigated.

The only commercial navigation that has existed in the Subbasin was on Dowils jake betrorn Dovisl Lake nnd linmewauken. If the lake \quad re restorec it is doubtful if this route vould be reopened because of the service siven by trueks and busses at present. Horever, tho lake ro ld bo usod for e lerge number and variety of pleasure craft.

Although there are a nurbir of small dems in the Sub-basin and a fer frosh water lakes the mejor portion of th: run-off reachos Devils Leke and other stegnant lakes where it is spread over a large aroa, in mery cases only a ion inches dorn, ant the resulting loss from evoporation is enormous. Some method should be provided for storede of this mater, befoie it reache: such lokes, in roscroirs having e reletively hegh ratio of storage capacity to metcr surface. This would decrease the loss by eveporation and vould provido n number of amil frosh riterlakes which world be of groat veluc ior rocreational purposes. The total everage annunl run-off in the Sub-basin is epproximatoly 45,000 acre feot. Prosent nertificial resorvoirs and lakes on whic: improvemats have been made have a stornge capaeity of approximetely 16,000 acre foet.

There are no present meter poror dovelopments mithin the Sub-besin nor are thare any etreams suitrele for such develonment.

Therc is little that con be ton? to improve existing streams in the Sut-basin. Chennols are ample to corry anay nny excess weter during high rur-off poriods. As stated above there is not a flood oroblon in the nren so thre is no need for improved channels or levecs, nor is therc a need or e possibility of
providine strcam regulation.

YINIIIPAL SUPPLY PROBLEMS

PROPOSED IMPROVETENTS IN MUNIUIPAL MATER SUFPLY

Several torns in the Devils Leike Sut-brsill notably Devils Leke and l'innewnukn have whtre supply problems. The chief problen seems to bo one of quelity rether than one of quantity.

It is propossd thet locel surveys or undert-len ret once to locnt: potible peter supolies for those toms now using wher of unsetisfactory nun?ity. It is furthry moposed thet then such sources of weter re locotod thet immoainte steps be token to moke then rurilable for use. Fon Dovils Loke it is proposcd that the survey follo: the proposals as outlined in Mr. Simpson's
 Honever, instond of the f"rmers participeting in the cost of such survey this rork could now be done by rolief lnbor.
"Secure the permission and co-operation of the orners of the shallow Arift wells located near the barns of the folloring mentioned farms. Enter and clean these iells and sink them through the gravel. loyer from whi h they dram their supply. Stop the rell at the drift clay or shale formation laying immediately beneath the erarel or sand and tizen maike a thorough pumping test to determine the yiela oi the gravel vein througn a shallow open well of this type. The following locr,tions are recomended: Mr. O. T. Thon, STit section 23 ; Mr. Nootneugle, ND $\frac{1}{7}$ section 14;
 These all lio betreen on and tro miles to the north of the city of Devils Lake.

Because of the value to the oiners in the cleaning, itproving and strengtinening of these rells, arringoments shoula be made Which rill divide the cost of all tho rorls unon the wells, except the umine tostis, share and sharc alike betren the orners and the city. A caroful record of tine depth of the grevel vein, the thickncss or the vein, togeth rith samples of the gravels for each foot penetrated should be kopt, also accurate records of the purning tests should be made, including the time of the test and the timo necossiry for the recovery of the head following the tost.

Sinco the result of theso tests rill thror much light on the possibility of securing en dequate supply from the gravels, I think it adviseble to do the rork upon those wells as soon as possible and beforn any expense is incuricd in tost drilling."

In the body of Mr. Simpson's report he strtes thet the Picrre Shale as a rinolu slopes to the eo 2 th tomards Devils Like. In view of this, it is proposed tinat a study bo made contemplating
a collection gallery to be placod at right angles to tho line of drainage in the gravel strata resting on the Pierre Shale. Should this not supp:y enoush rater, apipe line corld be placed from Siveetrater Laize to transport rater to this collection gallery. Tho witer mould be reieased in the gravel ebove the colleation gallery and the gravel beds rould thus be utilized as a filter.

As the city of Minnowaman has a sorious veter proolem in that its present supply is very alkaline, it is proposed that a. survey crev prospect tine gravel strata to the rest of the tom to see rhethr or not e setiefectory reter supply can be devoloped at this source.

If Devils ${ }^{\text {Lake }}$ tore refilled by the divarsion of nater from the Missouri River the rater in the lake rionld be satisfectory for municipii use then treatnd. Bovils Lake muld not need to scarch farther for a setisfactory vator supply. The municipal rater supply probln:s and the proposod brojects for their solution is given in Table R.

A fer torns along streams in the Sub-bosin dn not have sewage disposal plar:ts or sy tens. Othrirs clrcady hove systems but need improved treatront plants to reduce the pollation of the streams. There is much pollution of the reters in the Sub-basin due to weed grouth and the stagnation in marehes and coulees. Little cal be done to relieve this situation.

PROPOSED THROVEDTITT 10 SITEAGE SIETRIS

ExISTITVG BasERVOTAS

It is proposed then semge syotems and troatment plents bo installed in town along streams and crecks in tho Sub-basin where it is fearible to तo so and to nodernize existing treatment plants. Sewege problems and the proposed solutions are given in Table C.

A total of 18 dans have been constructed within the Sub-basin. Some of these are merely small chennel dams creating reservoirs in creek and coulce beds while oth rs scrve to refill old lako beds or raise the lovel of existing lakes. In all a reservoir cancity of spproximately $1 ?, 000$ acre feet ines been croated at a cost of $\$ 70,800$. A list of cxirtine, dars is given in mable A. Seviral oi these rescrvoirs are used for mipratory weterfomi refuges, man are used for recrention, and nll sorve reter conservetion purposes by keping the retcr out of dry or shellor: lekes where it rould be auickly lost by eveporation. In nddition to those undor constration it is proposed then severil ndditional rescrvoirs bo coeated.

It is proposed tinct . dike be pleced in the inlot to the lake wic: lics in soction 20-153-63 ad noth r in the inlet to the lare which lies in section 28, 29, 32, and 33-155-63 and
thus exclude the miter from these Jomes end divert it to Sueetwhtor Like projer. The locntions of these dikes rould be in the SE $\frac{1}{4}$ of section 20-155-63 and in the $5 \cdot \frac{1}{4}$ of section 29-155-53 resnectivily. The combined lintcr surince of these likes is 17,990 neres and that of Sweetreter $\mathrm{L}_{\text {ak: }}$ is 51,100 acres. At present thre is a net annuel ovaporation from the surface of the tro smaller lekes of 22,700 acre feet during an average yenr and 34,900 nere iect durine y ars of minimum precinitntion. This amount of rater diverted to Stertneter Labe mould raise its level 5 inches during on rvornge yran and 8 iaches during r. dry year over the lovel it rould mintain rithout such additional supply. This rould continue to raise Strecternter Lake until it leached an elcvation of anproximately 1,453 or several fect higher than its present elevation. It rould reach this elevation rithout apmeciebly increasing in reea but beyond that it rould overflor into several other inke beds and tine ovapore.tion ould egein be increased to such an extent as to toke core or all inflor.

One probesed dom is in the dreincge rron of Sreetmater Lnke and three are in thet of Lake Alice. However, as these are far up in the drainge aroas and as their rater surface is very small the effedt on tic lekes rould be nogligible. there is also a definite need for eesurvoirs at the points where thesc are proposed. It is proposed thr.t these resnrvoirs be mide as smoll is is ernsistrat mith the recrentional use to :hich they are to be nut. The Posey Slough project, nlthough it is in the Sreetrater Lake daninage area, ill not afiect the inticr becruse the project colls for using a present rond grode acrose the slough as a dom and installing a spillory under a bridge, thus increesing the roter level in the unper portion ronut tro feet at the expense of the lower onrt. In this ray nompler mersh vould be mantained a gronter sharo oi the time. The romaining proposils ore primorily for mator consorvation. The object of these is to maintain the ret:r in relatively decp rescrvoirs heving $:$ smell area exposed to evenorration rother then allor it to run into the dry bed of Devils Lirke, At worort it sprends over the loke bed in n thin shect ond is arickly lost by eveporntion. These reservoirs rould be located at convenient distances from smill torns and would dnibtless be usod for recreation when the weter was of sntisfnctory qunlity. The prodosed progrom of dams and dikes is given in Trble D.

The werge annual run-off for the Devils Loke Sub-basin is estirnted to be 0.22 of on inch. Denn E. F. Chandler of the Universiter of North Dokote mekes this estimate by considering the similarity of the topography ith thet oithe Souris River Sub-basin. This voluo rins checked by noting tho decline in Devils Lrake mien sions an excess of eveporation over run-off. The
dind-OFF WTAPORATION: SMUDIES

LAKE GAGING
AND FEATHER OBSTHRATION STATIONS
assumed net annual evoporation minus the annunl declinc in loke level equals the run-off to the lake. This ws found to check the estininted value of 0.22 of an inch wery closely. The minimum annunl run-off ras estimated in a similar manner.

Hydrological calculations were enrried out to detormine the behovior of the vorious proposed and existing reservoirs during dry to everage years. The evernge ennuel precipitation for the Sub-basin mes 16.50 inches and the average of the str.tion minimums ras 8.35 inches. Although the year of minimum procipitation nes not identical for all stations this figure was used in tine compute.tions. As dotermined in exporiments by Dean Chandler, evaporation docs not materially vary from met to dry yecrs. This is expleined by the fact that the percentage of sunshine, the reletive numidity, and rind velocities and directions are practically the same during a year of minimum precipitation as they are in all other years. The average yoarly evaporation from mater surfece as detrmined by Shendler vas 31.63 inches. Therefore, the annual net eveporation for an averege year mas 15.13 inches and that for $\begin{gathered}\text { year of minimum }\end{gathered}$ precipitation ens 23.28 inches. These represent valucs of 1.26 end 1.94 ncre ficet per acre of rater surface respectively. The run-off figures of -.22 inchos and 0.02 inchos represent runoffs of 11.7 and 1.07 acre feet per sauare milc per year rospectively. From the above it mas det-rmined that the run-off from one square mile of droinage vald support evoporation from 9.2 acres of pater surfece during on ave rage ycar and that from 0.55 acres during a yoar of minimum precipitation and run-off.

A large number of small reservoirs have been proposed for the Sub-brsin by various agencies. Those that nould serve purposes of recreation, irrightion, and taterforl refuges have beon included in the proposed program. It is proposed that before eny more small dars for stock potering nurposes be constructed in the Sub-besin, a detailcd survey of rurcl ater supply be undertaken to detnrmine the bost end most economical method of securing adocunte and satisfactory rator supplies for stock wntering purposes. Thire an adoounte ground roter supply is avoileble it is probeble thet this rould be through the construction of cormunity rells. In other lncelities not hevine a relieble ground retcr supply the construction of surface roservoirs mould be the only altermative. Follovine such a survey it is proposed thet acsistance be given in devoloping on edecunte rural reter supply..

Active meather recording stations in the Sub-basin are shom on Plate III. A loke gage is locrted near Devils Loke and rendings have been taken et irrogular intervels for meny years. No rdditionel facilities arc proposed but it is strongly urgod that all cristing stations be manteined.

No.	County	Sec. Twpe Rge.			Storage	Cost Est.	$\begin{array}{ll} & \text { De } \\ \text { Use } \\ \hline \end{array}$	osign ation	Descrintion and Remarks	Legend
1.	Rolette ${ }^{\text {r }}$	23	160	70	30	1,000	II,IV	P	Dam-Creel:.Near Mylo	*
2	Tomer ${ }^{\text {r }}$	28	162	66	2826	19,300	III,IV,VII	5	Dam across neck of Rock Lake	$\begin{aligned} & * * \\ & * * * * * \end{aligned}$
3.	Towner ${ }^{\text {' }}$	1	160	68	23	800	III	E	Dam-Creek, Near Perth	*
4.	Tommer ${ }^{\text {r }}$	13	157	66	20	2,000	III	F	Dam-Creek. Recommended recreational onntor:	***
5.	Towner	30	161	67	39	4,600	IV	H	-	*
6.	Cavolier ${ }^{\text {d }}$	26	159	60	63	3,000	III,IV	G	DammCreek. Near Nekoma	**
7.	Gavalier ${ }^{\text {V }}$	15	159	61	400	1,300	VII	G	Dam-Outlet to Billings Lake	*****
8.	Cavalier ${ }^{\text {r }}$	10	160	61	52	6,800	IV	F	Dam-Creek	*
9..	Ramsey ${ }^{\checkmark}$	21	156	65	10,000	3,100	IT,VII	F	Dam-Outlet to Lake Alice	*****
10?	Ramsey	13	157	61	9	3,200	III	\#	Dam-Creek at Edmore	**
11.	Benson	16/17	156	71	1,950	800	IV,VII	F	Dam-Outlet to Pleasant Lake	*****
12.	Benson	35	15!!	67	18	1,900	III,IV	G	Dam-Creek. Near Minnerraukan	*
13.	Bensonv	35	153	67	340	2,200	IV	P	Dam-Coulee	*
1lt.	Benson	21	152	65	28	4,300	IV	F	Dam-Coulee . Near Fort Totton	**
15.	Benson ${ }^{\vee}$	10	151	64	168	2,000	VII	P	Dam-Food Lake Marsh Project	*****

EXISTING RESERVOIRS
DEVLLS LAKE SUB-BASIN

In	Sec.TTM.		$\begin{aligned} & \text { Storage } \\ & \text { A.F. } \end{aligned}$		$\begin{aligned} & \text { Cost } \\ & \text { Est. } \end{aligned}$	Use	$\begin{aligned} & \text { igo } \\ & \text { ion } \end{aligned}$	Doscrintion \& Remarks	Legend
16, Nelson		152	61	558	7,700	IT	F	Dam-Creeis.	
17. Neisonv	19	152	60	130	2,000	III,IV	G	Dem-Creek. Several miles south of Ierkota.	$*$
18, Berson	33	154	57	22	1:800	IV	T	Dem-Creek.	**
19. Eclette	17	162	69	14	800	III,IV	F	Dam-Creek. At Rolla	*
20. Bons n \%	12/13	162	65	500	5,000	VII	F	Court Lake Project.	*****
TOMAL EXISTING	RESERVO	IRS:		,190	76,600				

E Excellent
G Good
F Fair
P Poor

S_{1}^{8}

TABLE A (Contid)
table b

PLATE I	Monicipality	Pop.	Objection to Present Supply	Proposed Improvements	Mells	Treatment Plant	$\begin{aligned} & \text { Dist. } \\ & \text { System } \end{aligned}$	Total Estimate
1.	Bisbee	531	No Fater System	Water. System and Treatment Plant.		\$10,000	\$25,000	\$35,000
2.	Brinsmade	199	High mineral and fluoride content.	$\begin{aligned} & \text { Survey and } 1 \\ & \text { well. } \end{aligned}$	\$600			700
3.	Bartlett	67	Inadequate for fire protection	$\begin{aligned} & \text { Survey and l } \\ & \text { well. } \end{aligned}$	600			700
4.	Calvin	330	Inadequate. Very hard.	Survey anḍ 3 rells. Softening plant.	1,800	5,000		6,900
5.	Cando	1,164	High mineral con-. tent. Inadequate pumping equipment.	Treatment plant Ner pumping equipment		10,000	8,000	18,000
6.	Church's Ferry	295	Inadequate :	$\begin{aligned} & \text { Survey and } 2 \\ & \text { rells. } \end{aligned}$	1,200			1,300
$7 \cdot$	Crary	278	Inadequate	$\begin{aligned} & \text { Survey and } 2 \\ & \text { wells. } \end{aligned}$	1,200			1,300
8.	Devils Lake	5.451	Highly mineralized.	Development of 2,000 nev source of supply. Treatment Plant	12,000	50,000	20,000	82,000
3.	Egoland	333	Inadequate for fire protaction. High	$\begin{aligned} & \text { Survey and } 2 \\ & \text { wells. } \end{aligned}$	1,200			1,300

	'a)		proposp rurarin minge	2 Em 			
				Rurn		Nairsit jit	Soinde
10.	Happden	222	annlysis.	$\underbrace{}_{\substack{\text { Surveg end } \\ \text { net1 }}} 100$	600		700
11.	Leeds	725	 construction.	Survor, 3 rexis " changes. 100	1,800	10,000	12,000
12.	Lekota	850			2,400	15,000 1,500	19,000
13.	Minine raukean	P6	Bram	Survey, 2 vells, 100	1,200	10,000 20,000	31,300
11.	uy10	136	$\begin{aligned} & \text { Innexpurte. No } \\ & \text { anelysis } \end{aligned}$	Surves and 1 roll 1	¢00		700
15.	Hensboro	176	Inc:dequete . High- ly mineroljzed.	Surveg nnd 1 vell 100	600		700
16.	Ferth	153	Inedequate. Deiep neills ere salty.	Surreg ond 1 vell 100	600		700
17.	Penn	150	Inedequate. No nnelysis.	vell 100	600		700

TABLE B (Contld)
PROPOSED IMPROVEMENTS IN HATER SUPFLY
$\$ 46,200$
CLASS "B" PROTECTS DEMANDING IMADIATE ATTEXITON UPON COHPLETION OF SURVEY:

CLASS "A" FROJECTS DEMANDITG IMMEDATE ATTENTIOHE

Totel Class "C" Projects.
TOTAL FROPOSED IMPROVEMENTS IN WATER SUPPLI;
TABLE C
PEOPOSED IMPROUSMYTS IT SEEACE DISFOSAL
DEVILS LAKE SUB-BASIN

PLATE II
CLASS UA" PROJECTS DELYANDITG IMMEDIATE ATTTENTION:
100,000 10,000
III,V,VI,VII

5,000
1,000,000 30;000,000
(In Devils Lake)

Entire Sub-Basin
Devils Lare, Sheyenne and
Lower Red Bnsins 1000 C.F.S. from the Missouri. River into the Shejenr.e, Jemos;
Souris, and Devils Leko Basins. Survoy of shril dons jrnposed * for flood irrigation, recrection; and waterforl refuge purposes. Survey of aveilable rater resources for stock ritering where present supplies are
inadequate or unsetisfectory. inadequate or unsatisfectory. the most satisfactory and econonicel solution of the problen
 mells or surface reservoirs.

폋

2,000
PROPOSED IMPROVEMENTS IN USE OF SURTACE WATER RESOURCES
DEVILS IAKFE SUB-BASIN

PIAmE II MAF NO.	County	Sec. Trpe Rge. Atorage Cap. Est.				$\begin{aligned} & \text { Cost } \\ & \text { Estir } \end{aligned}$	Use		Description \& Remnrks	Survey
5.	Torner	18	160	56	20	2,000	III	E	Dam-Boulder Creek	*
6,	Torner	36	160	68	20	500	III	E	Dam-Creek near 3isbee	*****
7.	ivelson		151	60/61		2,000	III	E	Dreḑge bonch in Sturp Lele to improve recreatirnal facilities.	
8.	Benson	13	156	69	60	6,000	III	E	Dam-Creek. Froliminary survey made.	*****
9.	Rolette	24	159	69	20	4,000	III, IV	E	Dam-Crcelr	*****
10.	Ramsey	22/27	156	61	1,000	500	VII	F	Construction of a concrete spillway under a bridec on the section line grade. Posey slough would be raised almost t:70 foot.	**

Total Class "A" Projects:
TABLE D (Contid)
PROPOSED IMPROVBMTMS IN USE OF SUPFACE TATER RESOUSCES
DPVIIS IAKE SUB-BASIN
-

Total Cless "C" Projects: TOTAS PROPOSED IMPFOVEMENS IN USE OF
SUREACS WARTR RESOTRGES: SUREACS WARTR RESOTRCES:. $\$ 1,103,031$
Survey:
** Field inspected by Stete. Engineor *** Surveyed by U.S. Army Engineors. $\begin{array}{ll}\text { II } & \text { Irrigatinn } \\ \text { III Recreation }\end{array}$ IV Stock Watering and Water Conservation V Municipal Fater Supply
VII Waterfowl Refuge. 1,911
\$ 35,000

$\$ 30,067,000$

$\frac{\text { Desiemetion: }}{E}$
$\begin{array}{ll}G & \text { Good } \\ F & \text { Fair } \\ P & \text { Poor }\end{array}$
TABLH E
PROPOSED FROJECTS
DEVILS LAKE SUB-BASIN
SUMMARY
CLASS TA" PROJECTS DEMANDING IMAEDIATE ATTTMNION:
CLASS "B" PROJECTS DEMANDING IMMEDIATE ATTYNTION UPON COMPIETICN OF SURVEY:
Proposed Irprovements in Water Supply
CLASS "C" PROJECTS IN PTAN NOT INCLUDED IN CIASSES "A" AND "B":

[^1]170,000
95,000
35,000
300,000
30,597,600
$*$

Total Class "A" Projects:

Proposed Improvements in Water Supply

NORMT DAKOMASTATE PLAMING BORRD
CUMASY LEPORTS
07
A FIAT OF WABER COIGERGMTONTOR
MORCH DAKOTA
Volume I Lettor of Mremsmittel For: mard Re? zituor of tie North Drainago Basin
Volume 2 James Fivor Drrinace Bnain
Volume 3 Souris River-Jovils Late Drainnge Sesins
Volum 4 Niein Stem Missouri Fiver Besin
Volume 5 Sicpe Area Ircinage 耳anins

[^0]: * 1. 308 Report on Jemee River in North \& South Dakota. 2. "Report on Missouri River Dam and Diversion Project in North and South Dakota" by Jurns and NeDonnell Encineering Co.

 3. "Renort on Missouri River Diversion in North Dakota" by R. E. Kennedy, North Dakota State Engineer.
[^1]: TOTAL PROPOSED PROJECTS:

 $$
 \begin{aligned}
 & \text { Proposed Irprovements in Water Supply } \\
 & \text { Proposed Irprovements in Serrage Disposal } \\
 & \text { Propesed Irprovements in Use of Surface Water } \\
 & \text { Resources. } \\
 & \quad \text { Total Class "C" Projects: }
 \end{aligned}
 $$

