


# PROPERTY OF ND STATE WATER COMMISSION LIBRARY

SEVENTH BIENNIAL REPORT

of the

# State Water Conservation Commission

and the

# TWENTY-FOURTH BIENNIAL REPORT

of the

# **STATE ENGINEER**

of

# North Dakota



**To June 30, 1950** Buy "Dakota Maid" Flour

\_ · ~

# MAPS, GRAPHS, PICTURES

.

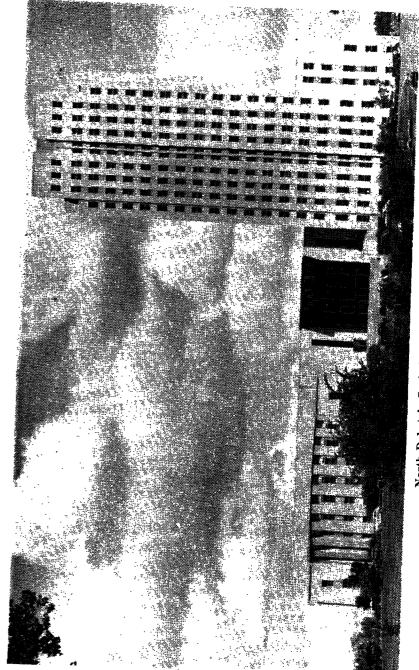
۰.

5

.

>

.


|                                              | Page |
|----------------------------------------------|------|
| North Dakota Capitol                         |      |
| Governor Aandahl                             |      |
| Garrison Dam and Water Control Structures    |      |
| Garrison dam construction bridge             | 10   |
| Garrison dam tunnel outlets                  | 16   |
| Garrison dam hydroelectric plant             | 20   |
| Garrison dam tunnel construction             | 22   |
| Garrison dam tunnel portals                  | 24   |
| Missouri Basin Corps of Engin. plan map      | 26   |
| Irrigation, Progress of in N. D.             | 28   |
| Heart River Projects map                     | 30   |
| Knife River proposed irrigation map          | 32   |
| Large Columbia Basin Canal                   | 34   |
| REA, Velva generating plant                  | 36   |
| Garrison dam intake structure                | 38   |
| Missouri-Souris irr. area map                | 40   |
| Wogansport unit site pictured                |      |
| Central N. D. proposed irrigation            | 43   |
| Missouri-Souris diversion dam                |      |
| Dickinson dam and spillway                   |      |
| Cannonball river dam site                    |      |
| Lewis & Clarke Irr. Dist. map                |      |
| Grenora, N. D. proposed pump plant           |      |
| Irrigated and non-irrigated lands in U.S.    |      |
| Irrigation siphoning tubes                   |      |
| Sheyenne river dam site picture              | 56   |
| Yellowstone Irr. Dist. main canal            |      |
| Hereford steer feeders on Yellowstone dist.  |      |
| Bach farm home, Yellowstone irr.             |      |
| Danielson farm home, Yellowstone             |      |
| Garrison dam, machines packing fill          |      |
| Garrison dam, tunnel outlet                  |      |
| Devils Lake water level graph and map        |      |
| Red River Valley flood damage areas          |      |
| Red River proposed flood control map         |      |
| Temperature, rainfall and wheat yields graph |      |
| Wheat Yields in N. D. Counties, averages     |      |
| Alfalfa under irrigation picture             |      |
| Feeder lambs, Yellowstone irr. dist.         | 82   |

# MAPS, GRAPHS, PICTURES—(Continued)

| MALS, GRATHS, TRIOREDS—(Continued)          |        |
|---------------------------------------------|--------|
|                                             | Page   |
| Irrigated oats and barley, Yellowstone      |        |
| Missouri river at Bismarck picture          |        |
| Groundwater survey progress map             |        |
| Topographic mapping progress map            | 90     |
| Lignite coal vein, Garrison dam             | 161    |
| Rainfall, U. S. Average map                 | 162    |
| Meteoroligal maps, precipitation            | 164    |
| Meteorological maps, frost, rainfall        | 166    |
| Meteorological maps, temperature            | 166    |
| Meteorological maps, killing frosts         | 168    |
| Rainfall graphs, Williston, Dickinson       | 169    |
| Rainfall graphs, Mott, Bowman, Beach        | 170    |
| Rainfall graphs, Minot, Jamestown           | 171    |
| Rainfall graphs, Bismarck, Devils Lake      | 172    |
| Rainfall graphs, Moorhead, Grand Forks      | 173    |
| Lake Darling reservoir water levels graph   | . 176  |
| Underground water surveys and request maps8 | 38-178 |
| Fort Clark Irr. Dist. pumping site          | . 194  |
| Irrigated Pasture cattle test               | 196    |
| Dickinson reservoir recreation plan         | . 198  |
| Bowman-Haley map of proposed irri.          | . 200  |
| Buford-Trenton pumping station              | . 202  |
| Buford-Trenton map                          | .204-6 |
| Dam repair pictures                         | . 208  |
| Exhibits picture shows conservation plans   | . 214  |
| Tree ring study graph, wet and dry seasons  | . 216  |
| • •                                         |        |

# TABLE OF CONTENTS

|                                                                | Page     |
|----------------------------------------------------------------|----------|
| Letter of Transmittal                                          | 6        |
| Antiquity of irrigation                                        | 7        |
| Organization, personnel, powers and duties of Water Commission | 9        |
| State Engineer, powers and duties                              | 12       |
| History of Irrigation                                          | 13       |
| Corps of Army Engineers, activities                            | 15       |
| Water Conservation in North Dakota                             | 25       |
| Water Commission activities                                    | 29       |
| Water Commission appropriations 1949-51                        | 33       |
| Bureau of Reclamation, irrigation activities                   | 39       |
| Missouri-Souris irrigation project                             |          |
| Flood of 1950 breaks records                                   | 47       |
| Rural Electrification Adm. progress                            | 47-174   |
| Lower Yellowstone Irr. Dist. progress                          | 59-61-63 |
| Congressional appropriations for 1949                          | 69       |
| Devils Lake, record rise 1950                                  | 71       |
| Flood Damage, 1950 in North Dakota                             | 71       |
| Drainage, Red River valley map                                 | 72       |
| Drainage, Corps of Engineers project                           | 74       |
| Conservancy District Organized                                 | 83       |
| North Dakota Reclamation Assn., others                         | 83       |
| U. S. Geological Survey, water resources                       | 87       |
| U. S. Geological Survey, topographic mapping                   | 91       |
| U. S. Geological Survey, stream flow tables                    | 96-159   |
| Wet and Dry Seasons, tree ring studies                         | .137-200 |
| North Dakota Research Foundation, data                         |          |
| United States Weather Bureau                                   | .163-174 |
| U. S. Fish and Wildlife Service                                | 177      |
| State Geologist report, groundwaters survey                    | .179-182 |
| State Health Department                                        | 183      |
| Agricultural College of N. D.                                  | 184      |
| Interstate River Compacts                                      | 187      |
| International Joint Commission                                 | 191      |
| Missouri Basin Inter-Agency Committee                          | 197      |
| Appropriations explained                                       | -206-207 |
| Maintenance of dams207-209                                     |          |
| Financial Statement                                            |          |
| Educational Exhibits213                                        | -214-215 |
| Drouths may be experienced again                               | 215-216  |



North Dakota's Capitol — Legislative Halls at Left

LETTER OF TRANSMITTAL

Honorable Fred G. Aandahl Governor of North Dakota

Sir:

In compliance with provisions of law, we transmit herewith for your information and consideration the Seventh Biennial Report of the activities of the State Water Conservation Commission and the Twenty-Fourth Biennial Report of the State Engineer, from October 1, 1948, to June 30, 1950.

Respectfully submitted,

# STATE WATER CONSERVATION COMMISSION

S. W. THOMPSON, Vice Chairman EINAR H. DAHL CURTIS OLSON EARLE F. TUCKER A. M. CHRISTENSEN MATH DAHL

J. J. Walsh

.....

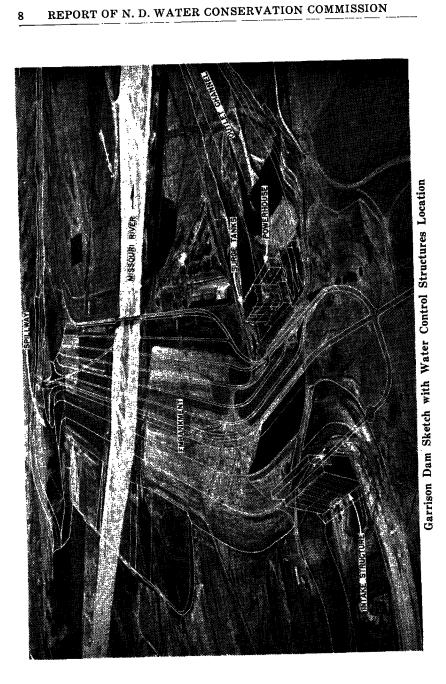
Secretary and Chief Engineer, State Engineer



GOVERNOR FRED G. AANDAHL, Ex-officio Chairman of the State Water Conservation Commission, stated:

"This water development program will have as far reaching influence upon the future economy and prosperity of the area as the original Homestead Act."

### ANTIQUITY OF IRRIGATION


"And a river went out of Eden to water the garden; and from thence it was parted and became into four heads." Genesis 2:10.

"And thus saith the Lord, ye shall not see wind,

"Neither shall ye see rain, yet that valley shall be filled with water, that ye may drink, both ye and your cattle, and your beasts." Kings, 3:16-17.

# NORTH DAKOTA CONSTITUTION DECLARES:

Sec. 210—"All flowing streams and natural water courses shall forever remain the property of the state for mining, irrigating and manufacturing purposes."



### ORGANIZATION AND PERSONNEL

The State Water Conservation Commission of seven members was created by the 1937 legislature. The Governor was made ex-officio chairman and authorized to appoint the other members. Amendments to the law were made by the 1939 legislature, reducing the membership to five. Other amendments increasing the scope of the commission's activities were made at later sessions.

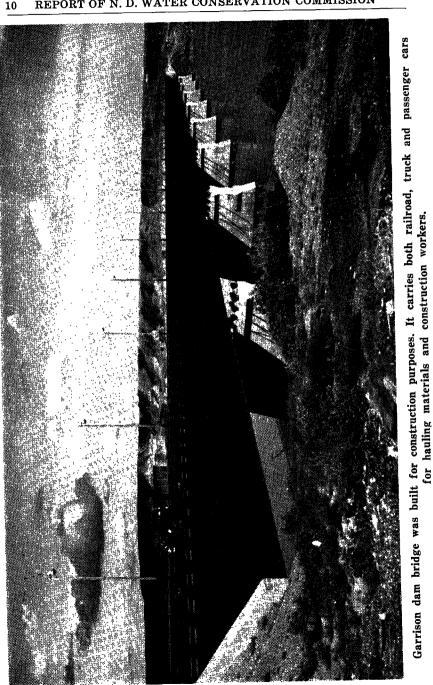
The Commission was enlarged again by the 1949 legislative session to seven, consisting of the Governor, Commissioner of Agriculture and Labor, and five other members to be appointed by the Governor. The two new members are Math Dahl and A. M. Christensen. Mr. Tucker was reappointed on July 8, 1949, to a six-year term, terminating July 1, 1955.

The Commission is presently composed of the following members:

|                                                                | Term Began           | Term Ends     |
|----------------------------------------------------------------|----------------------|---------------|
| Governor Fred G. Aandahl,<br>ex-officio chairman               | Jan. 2, 1945         | Jan. 2, 1951  |
| C. Norman Brunsdale, Governor-elect<br>and ex-officio chairman | Jan. 2, 1951         |               |
| Sivert W. Thompson, Vice-Chairman,                             |                      |               |
| Devils Lake                                                    | April 3, 1939        | June 30, 1953 |
| Einar H. Dahl, Watford City                                    | April 3, 1939        | June 30, 1953 |
| Curtis Olson, Valley City                                      | Jan. 1, 1948         | June 30, 1951 |
| Earle F. Tucker, Bismarck                                      | May 1, 1948          | July 1, 1955  |
| A. M. Christensen, Minot                                       | May 27, 1949         | June 30, 1955 |
| Math Dahl, ex-officio as Commissioner                          |                      |               |
| of Agriculture and Labor                                       | <b>M</b> ay 27, 1949 |               |
| J. J. Walsh, Secretary and Chief                               |                      |               |
| Engineer, State Engineer                                       |                      |               |

### POWERS AND DUTIES, STATE WATER COMMISSION

Powers and Duties of the Commission. The commission shall have full and complete power, authority, and general jurisdiction:


1. To investigate, plan, regulate, undertake, construct, establish, maintain, control, and supervise all works, dams, and projects, public and private, which in its judgment may be necessary or advisable:

a. To control the low-water flow of streams in the state;

b. To impound water for the improvement of municipal and rural water supplies;

c. To control and regulate flood flow in the streams of the state to minimize the damage of such flood waters;

# STATE OF NORTH DAKOTA



d. To conserve and develop the waters within the natural watershed areas of the state and, subject to vested and riparian rights, to divert the waters within water-shed area to another water-shed area and the waters of any river, lake or stream into another river, lake or stream.

e. To improve the channels of the streams for more efficient transportation of the available water in the streams;

f. To provide sufficient water flow for the abatement of stream pollution;

g. To develop, restore and stabilize the waters of the state for domestic, agricultural and municipal needs, irrigation, flood control, recreation, and wildlife conservation, by the construction and maintenance of dams, reservoirs and diversion canals;

h. To promote the maintenance of existing drainage channels in good agricultural lands and to construct any needed channels;

i. To provide more satisfactory subsurface water supplies for the smaller villages of the state;

j. To finance the construction, establishment, and maintenance of public and private works, dams, and irrigation projects, which in its judgment may be necessary and advisable;

k. To provide for the storage, development, diversion, delivery, and distribution of water for the irrigation of agricultural land;

1. To provide for the drainage of lands injured by or susceptible of injury from excessive rainfall or from the utilization of irrigation water and, subject to the limitations prescribed by law, to aid and cooperate with the United States and any department, agency, or officer thereof, and with any county, township, drainage district or irrigation district of this state, or of other states, in the construction or improvement of such drains;

m. To provide water for stock; and

n. To provide water for the generation of electric power and for mining and manufacturing purposes;

2. To define, declare, and establish rules and regulations:

a. For the sale of waters and water rights to individuals, associations, corporations, and political subdivisions of the state, and for the delivery of water to users;

b. For the full and complete supervision, regulation, and control of the water supplies within the state; and

c. For the complete supervision and control of acts tending to pollute watercourses, for the protection of the health and safety of all the people of the state;

3. To exercise full power and control of the construction, operation, and maintenance of works and the collection of rates, charges, and revenues realized therefrom;

4. To sell, lease, and otherwise distribute all waters which may be developed, impounded, and diverted by the commission under the provisions of this chapter, for the purpose of irrigation, the development of power, and the watering of livestock, and for any other private or public use; and

5. To exercise all express and implied rights, power, and authority, that may be necessary, and to do, perform, and carry out all of the expressed purposes of this chapter and all of the purposes reasonably implied incidentally thereto or lawfully connected therewith.

6. To acquire, own and develop lands for irrigation and water conservation and to acquire, own and develop dam sites and reservoir sites and to acquire easements and rights-of-way for diversion and distributing canals.

7. To cooperate with the United States and any department, agency or officer thereof in the planning, establishment and maintenance of dams, reservoirs, diversion and distributing canals, for the utilization of the waters of the state for domestic and municipal needs, irrigation, flood control, water conservation, generation of electric power and for mining, agricultural and manufacturing purposes, and in this connection the State Water Conservation Commission is hereby authorized, within the limitations prescribed by law, to acquire, convey, contribute or grant to the United States real and personal property, including land or easements for dams and reservoir sites and rights-of-way and easements for diversion and distribution canals.

### THE STATE ENGINEER

The State Water Conservation Commission appoints the State Engineer, who shall be a qualified and experienced hydraulic engineer and also shall be an experienced irrigation engineer. He shall serve as secretary and chief engineer of the commission.

He is required to make a formal printed report to the Governor for the biennium preceding each legislative session. He passes on applications for permits to appropriate water, records the permit when granted, and issues certificate of construction of irrigation works or dams when completed, examines and approves plans and specifications for dams or irrigation works, inspects dam sites and construction works, and collects state fees for same as required by law.

His records are open to public inspection during business hours. He is the custodian of General Land office maps, field notes and records of surveys of land turned over by the government to the state.

He shall make such rules and regulations necessary to carry into effect the duties devolving upon his office, relating to applications for permits to appropriate water, for the inspection of works, for the issuance of licenses, and for the determination of rights to the use of water.

He cooperates with Federal agencies in making hydrographic surveys and investigation of each stream system and source of water supply in the state, and shall obtain and record all available data for the determination, development and adjudication of the water supply of the state, and other duties pertaining thereto.

He cooperates with the U. S. Geological Survey in making topographic maps and surveys.

### EARLY HISTORY OF IRRIGATION

Irrigation, the watering of land by artificial means, to increase crop production, has been used since ancient times in arid and semi-arid countries.

The water supply may be either surface flow from reservoirs created by damming of streams and rivers or from direct stream diversion, or it may be pumped from underground strata.

Irrigation is an historic practice, recorded in the Nile valley in Egypt as early as 2,000 B.C., and practiced in adjacent areas, particularly in Babylonia, Palestine, and India. Large irrigation works were in operation in Tunisia, Algeria and Morocco. Probably the earliest irrigation was practiced in China.

On the American continent, also, the practice of irrigation goes back to immemorial times. At the time of the Spanish conquest, irrigation practice was found well developed, and irrigation structures existed then which dated back to the first traditions of the native population.

In Peru are remains of irrigation structures of undoubted antiquity and of a quality comparable with the best of the present day. In Chile, similar remains are found. In Argentina, there are remains of vast irrigation structures. In fact, along the Atlantic and Pacific drainages of South America, where the climate made it desirable, great irrigation structures were built. In some places stupendous irrigation canals may be traced—400 to 500 miles long. There is evidence to show, also, that

### 14 REPORT OF N. D. WATER CONSERVATION COMMISSION

on the American continent refinements of irrigation were practiced, superior to any others known.

After the discovery of America, the zealous Catholic missionaries established missions in various parts of the two American continents. These priests were chiefly from southern Europe and well acquainted with irrigation. Whenever a mission was established in an arid section, a small irrigation system was also built for the support of the mission. Remains of these mission irrigation systems are found in various parts of America, notably in California.

Large scale irrigation was first practiced in the United States by the Mormons in Utah. From their success grew the prevalence of present day irrigation in western United States, principally west of the 100th Meridian, where it is essential to sound, stable agriculture.

Early in the spring of 1847, a party of pioneers, under the leadership of Brigham Young, set out from their winter camp, near what is now Council Bluffs, to find in the far west a place where their people could settle. On July 24, this party of pioneers entered the Great Salt Lake Valley, chosen as the place of settlement, and on that day planted potatoes in what is now the business section of Salt Lake City, and gave the soil a good soaking of water brought from the neighboring City Creek through a plow furrow that served as a ditch.

This was the birth of modern irrigation in the United States.

In 1902 the U. S. Reclamation Service was created, now designated as the Bureau of Reclamation. During these 48 years, the Bureau of Reclamation has constructed irrigation features to serve more than 5,000,000 acres of arid and semi-arid land in the western states. As an integral part of its program, the Bureau has constructed hydro-electric power plants with an installed capacity of approximately 3,000,000 kilowatts.

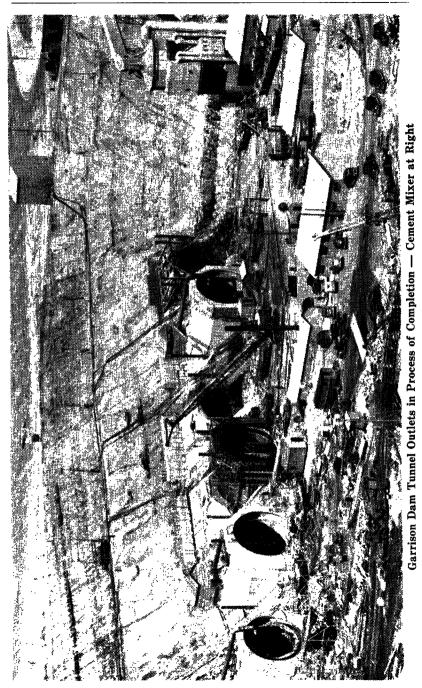
A federal investment of about \$1,500,000,000 has been made to construct existing reclamation projects in the area in which it operates—the 17 western states.

Many dams are now built as multiple-purpose structures, including irrigation, flood control, improvement of navigation and generation of hydroelectric power.

According to the 1940 census more than 20,000,000 acres of land were under irrigation at that time in the 17 western states. Of this, 3,791,000 were served by the Bureau of Reclamation and Indian Office works, and the remainder by private developments.

The most enlightened peoples have always practised and do now practise irrigation, if climatic conditions make it desirable. It is difficult for an unintelligent or shiftless people to become good irrigators.

### ACTIVITIES OF WAR DEPARTMENT CORP OF ARMY ENGINEERS PROJECTS UNDERWAY


### **Garrison Dam and Reservoir**

Progress is being made on the Garrison Dam and Reservoir Project now under construction by the Corps of Engineers, Department of the Army. The project is under the immediate supervision of Col. F. M. Albrecht, District Engineer, Garrison District at Fort Lincoln. Brig. Gen. S. D. Sturgis, Jr., Division Engineer Missouri River Division, Omaha, Nebraska, is in charge of all projects being constructed by the Corps of Engineers, of which Garrison is the key unit, under the Pick-Sloan comprehensive plan for the conservation of water resources of the Missouri Basin.

The Garrison dam and reservoir is a multi-purpose project for flood control, hydro-electric power, irrigation, navigation, water supply, and sanitation. The reservoir will extend upstream about 200 miles to the Montana state line, and have a capacity of 23.000,000 acre-feet and an area of 390,000 acres at maximum normal operating pool. The dam will be a rolled earth-fill structure over two miles long, rise 210 feet above the stream bed and contain about 70 million cubic vards of material. The spillway located in the east abutment, will be of the concrete chutetype, controlled by 28 tainter gates 40 feet wide by 29 feet high. The outlet works, in the west abutment, will consist of an intake tower, eight tunnels, stilling basin, and tailrace. Three tunnels, one 26 feet and two 22 feet in diameter. will serve for reservoir regulation and flood control operation. The other five, all 29 feet in diameter, will serve for power generation. Th powerhouse will have an initial capacity of 240,000 kilowatts with provision for ultimate capacity of 400,000 kilowatts. Approximate reservoir storage allocations will be 4.900.000 acre-feet of dead storage below elevation 1775, 13,850,000 acre-feet of multiple-purpose storage between elevations 1775 and 1838, and 4.250,000 acre-feet of flood control storage between elevation 1838 and maximum normal operating pool elevation 1850.

The project is scheduled for completion in 1955, at an estimated cost of \$202,000,000, all of which is to be borne by the federal government. Additional appropriations of approximately \$122,000,000 will be required to complete the project.

The reservoir, in conjunction with other projects in the comprehensive Missouri basin plan, will provide complete protection in the Missouri valley from floods equal to those of record on the main stem, will effect important reductions in flood stages of the lower Mississippi river and benefit navigation on the Missouri and Mississippi rivers by release of stored flood waters during low flow periods. It will contribute to the development of irrigation by making possible release of a portion



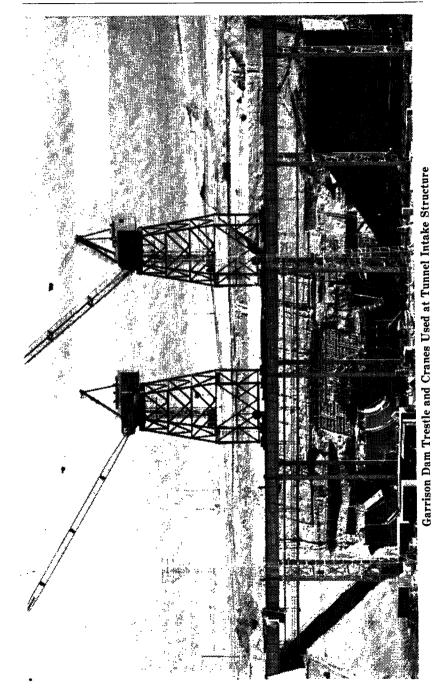
of Fort Peck reservoir storage capacity to irrigation service and, possibly, by a direct diversion from Garrison reservoir to the eastern Dakotas. Diversion will also provide additional water for domestic water supply and sewage dilution along the James, Sheyenne and Red rivers and for restoration of Devils Lake. Recreational opportunities will be made available in a region which is now particularly devoid of facilities of this type. Production of low-cost power will result in widespread benefits.

### **Oahe Dam and Reservoir**

Oahe dam, like Garrison, is a multiple-purpose project for flood control, hydro-electric power, irrigation, and navigation. The reservoir will extend about 250 miles upstream from the dam to a point near Bismarck. The dam will be a rolled earth fill structure about 9,300 feet long and 242 feet high above the river bed. The spillway will be an uncontrolled chute-type located on the west bank about one mile from the dam abutment. The reservoir will have a capacity of 22,500,000 acrefeet at maximum normal operating pool elevation of 1617 m.s.l. No completion date has been established for the project, on which construction work has just been initiated. Total cost is estimated at \$234,400,000.

### **Red River of the North**

The Red river of the north project, authorized by the Flood Control act of 1948, lies in western Minnesota and eastern North Dakota. Work in North Dakota lies almost entirely in the valley of the Red river, either on that river itself or on its major tributaries immediately above their mouths.


The Red river of the north is formed by the confluence of the Ottertail and Bois de Sioux rivers at the twin cities of Wahpeton, North Dakota, and Breckenridge, Minnesota. It flows 400 miles to the international boundary in a tortuous northerly course through the broad flat bed of glacial Lake Agassiz. The flat slope and poor drainage, coupled with melting of winter-long accumulations of snow have resulted in severe floods of long duration, with increasing frequency during recent years.

The portions of the project in or adjacent to North Daota consist of channel improvements, levees and flood walls as follows:

| Unit                                                     | Туре                                                        | Estimated (1949)<br>Federal Cost |
|----------------------------------------------------------|-------------------------------------------------------------|----------------------------------|
| Sheyenne river                                           | 38.3 miles of channel improvement                           | \$ 866,400                       |
| Rush river                                               | 26.9 miles of channel improvement                           | 555,200                          |
| Maple river                                              | 32.4 miles of channel improvement                           | 1,134,000                        |
| Bois de Sioux and Red rivers<br>at Wahpeton-Breckenridge | 13.9 miles of chaunel improvement                           | 487,300*                         |
| Red river at Grand Forks—<br>East Grand Forks            | 21.9 miles of channel improvement,<br>levees and flood wall | 2,230,700*                       |
| Red river at Fargo-Moorhead                              | 29 miles of channel improvement,<br>levees and flood wall   | 1,466,200*                       |

\*Includes the Minnesota portion of the unit

18



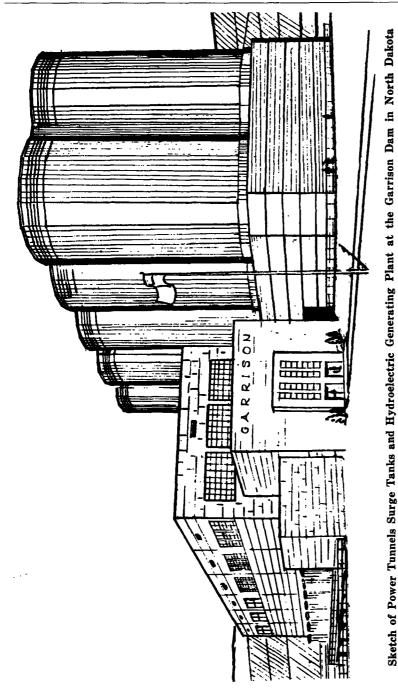
### STATE OF NORTH DAKOTA

Channel improvements consist of clearing, straightening and enlarging. The earth levee at Grand Forks will be about 6,700 feet long, that at East Grand Forks will be 9,600 feet in length, including a 1,600-foot concrete flood wall section. The levee at Fargo will be about one mile in length, including a 900-foot section of floodwall. The Moorhead levee will be about 1,800 feet in length.

Planning is underway on all of the above features and funds have been available for initiating construction on the Sheyenne river unit, but due to lack of required assurances of local cooperation, construction has not been started. The project as a whole will be completed in about five years, dependent upon receipt of sufficient funds.

### **Baldhill Dam and Reservoir**

Baldhill dam and reservoir, located in east central North Dakota on the Sheyenne river about 16 miles above Valley City, was authorized by the Flood Control act of 1944.


Baldhill dam was constructed for flood control and water utilization. The project comprises an earth fill dam with concrete spillway and control works. The dam has a total length of about 1,650 feet with a concrete gravity ogee control works about 140 feet in length, surmounted by three 40-foot Tainter gates, with two 3-foot diameter conduits in the piers for low water control. The earth dam and control works have been completed. Acquisition of remaining lands in the upstream portion of the reservoir and clearing thereon, and construction of operators dwelling and service buildings are the principal remaining items to be accomplished. The project can be completed by the spring of 1951 if sufficient funds are received. Present estimate of cost is \$2,694,500.

Congress named the reservoir behind the dam, Lake Ashtabula, an Indian name meaning "Fish River."

### Mandan

This project is located in the west central part of the state on both banks of the Heart river, approximately six miles above its confluence with the Missouri river, in Morton county. It was authorized by the Flood Control Act of 1946.

Municipal areas in Mandan have been inundated 24 times since 1881. Floods have caused extensive and repeated damage to domestic, business, industrial, railroad and civic properties. Severe losses have been suffered through traffic delays on U.S. Highway 10 and the Northern Pacific Railroad, both of which are transcontinental routes and pass through Mandan. The project, sufficiently completed during the 1949 construction season to be placed in emergency operation, consists of relocating and raising of approximately 23,000 lineal feet of levee, constructing 287 lineal feet of concrete cantilever type flood wall, reinforcing approximately 5,500 feet of railroad embankment to be utilized as levee, placing



STATE OF NORTH DAKOTA

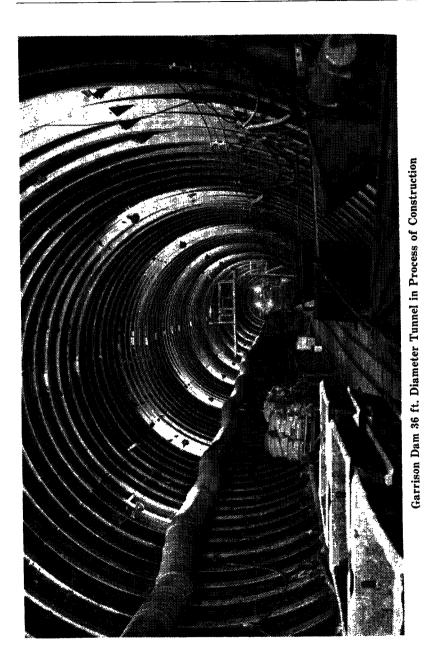
riprap protection on 600 lineal feet of stream bank, raising two highway bridges and adding one 75-foot span, constructing one stop log structure, and providing appurtenant drainage facilities to discharge sewage and storm flow during periods of flood. The federal and non-federal costs of the project will be approximately \$551,700 and \$93,100 respectively. The project will be completed during the 1950 construction season.

### Homme Dam and Reservoir

Homme dam and reservoir is located in the northeast corner of North Dakota on the south branch of Park river, about four miles upstream from the city of Park River. The project was authorized by the Flood Control Act of 1944.

Homme reservoir has been designed to provide protection from spring overflow and a dependable stream flow for water supply and sewage dilution purposes. The dam consists of an earth-fill structure 865 feet long with a controlled concrete conduit five feet in diameter under the dam and a concrete overflow spillway about 150 feet in length adjacent to the dam. The reservoir has a storage capacity of about 3,650 acre-feet below spillway crest. Pool clearing and construction of the earth dam and control works have been completed. The concrete spillway is under construction and will be completed by the fall of 1950. The present estimated cost is \$1,339,000.

### AUTHORIZED PROJECTS


### Diversion Into the Dakotas

This project, which will be located in central North Dakota, east of Garrison dam, was authorized by the Flood Control act of 1944.

The plan contemplates diversion of water from Garrison reservoir into Snake creek and Turtle Lake basin. Auxiliary reservoir will be created by a dam across the Snake creek arm of the reservoir. This reservoir will fill when the main reservoir is high and gates will hold the water available for pumping over the divide to the east. When the main reservoir is not high enough to fill the Snake creek reservoir by gravity, it will be filled by pumping. At the east end of the Snake creek and Turtle Lake basin, near Prophets mountain, a second pumping plant will lift the water 45 to 55 feet, from which point it will flow by gravity through canals and drop structures to the headwaters of James and Sheyenne rivers and be diverted into Devils lake. The estimated federal cost of the work is \$35,000,000.

### Pembina and Tongue River Reservoirs

These projects, located in the extreme northeast corner of North Dakota, were authorized by the Flood Control act of 1944. Restudy of the projects was authorized by senate commerce committee resolution

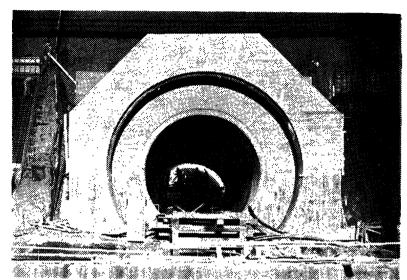


### Jamestown Dam and Reservoir

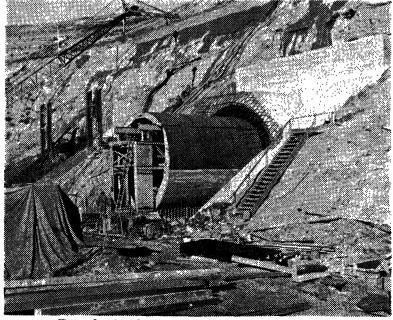
This project, located in east central North Dakota on James river approximately one mile north of Jamestown, was authorized in the Flood Control act of 1944. It is now being planned by the Bureau of Reclamation.

### Marmarth

This project, located in southwest North Dakota on the Little Missouri river, was authorized by the Flood Control act of 1936. It consists of levees to protect the city of Marmarth from floods on Little Missouri river and on Little Beaver creek, which is tributary to the Little Missouri at Marmarth. It remained inactive for several years because of lack of necessary local cooperation, but in 1946 the city requested that it be reactivated and offered to furnish the necessary local cooperation. A new report, recommending an expanded and enlarged project, was prepared and submitted to Congress. The original project will remain inactive pending action by Congress on this report.


### Beulah

This project, located in west central North Dakota, was authorized by the Flood Control act of 1944. Past floods from two coulees which drain through the town have inundated the major portion of Beulah and have caused damage to utilities, business and city property and the Northern Pacific Railroad. The project plan provides for protection against floods from the two coulees by increasing the capacity of existing drainage channels through which the coulees drain into Knife river. The project is inactive owing to lack of local cooperation and its authorization will expire on December 9, 1952, under the terms of Section 3 of the 1944 Flood Control act, if local cooperation requirements have not been met by that time.


### Hazen

This project is also located in west central North Dakota and was authorized by the Flood Control act of 1944. The city of Hazen lies on an alluvial plain between the Knife river and Antelope creek, a tributary, about two miles above their confluence. Past floods on Antelope creek have inundated the major portion of Hazen and caused extensive damage to municipal, business, and private property and to Northern Pacific Railroad facilities in the town. The project plan provides for the protection of Hazen by the construction of levees along the north and west sides of the town, together with appurtenant drainage and bridge work. Local interests have not furnished the necessary assurances of local cooperation, and the project is in an inactive status. The five-year period, established by Section 3 of the Flood Control act of December 22, 1944, will end on March 30, 1953, and the project authorization will expire at that time if local cooperation requirements have not been met.

### 24 REPORT OF N. D. WATER CONSERVATION COMMISSION



Floodlights enabled the photographer to take this night picture of the upstream portal of tunnel No. 7, recently completed. This tunnel is 22 ft. in diameter and required 10,947 cubic yards of concrete in the  $3\frac{1}{2}$  ft. thick lining.



Form for 3<sup>1</sup>/<sub>2</sub> ft. Concrete Lining, Garrison Tunnel

### DEVELOPMENT OF WATER CONSERVATION IN NORTH DAKOTA

More than one-half of North Dakota is in the arid zone, where rainfalls are irregular and during some years insufficient to mature crops. Farming and ranching during dry periods is a precarious mode of making a living. The uncertain economy of the western half of the state culminated in the drought of the thirties with searching winds and years of watching an unrelenting sky for rain, almost completely bankrupting the area.

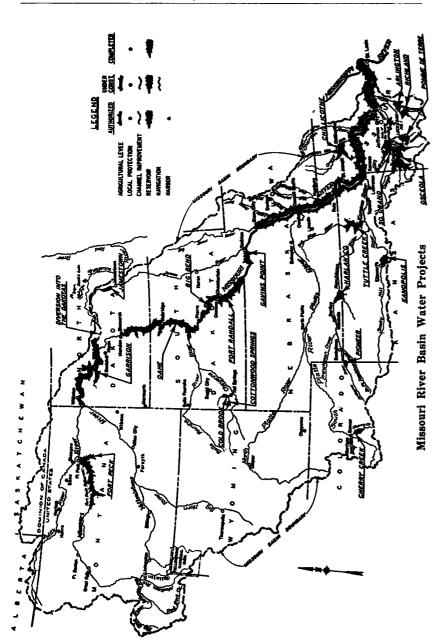
This was, however, nothing new in the history of the state. Climatic irregularities, most of the time with disastrous results, had been experienced with marked regularities ever since man inhabited the region. Official records during the later decades showed that the original pattern is part and parcel of this area.

The North Dakota constitutional convention in 1888, after being warned by Major J. W. Powell, director of the U. S. geological survey, adopted the following as part of the constitution:

"All flowing streams and natural water courses shall forever remain the property of the state for mining, irrigating and manufacturing purposes."

In 1905 the legislature created the office of state engineer and vested in him the authority to grant water rights—the right to appropriate the waters of streams and rivers for beneficial use.

In 1917 the law was enacted providing for the establishment and maintenance of irrigation districts.


The North Dakota State Water Conservation Commission was created by the 1937 legislature. This act was reenacted in 1939.

The state water commission is composed of seven members of which the governor is ex-officio chairman.

After its creation in 1937, the commission, in cooperation with the North Dakota Rural Rehabiliation Corporation, established the Lewis and Clark project in McKenzie county and the Sioux irrigation project near Cartwright, in the same county. Several small irrigation projects were also established in cooperation with the Rural Rehabilitation Corporation in Sioux county for the purpose of making irrigated gardens available to drought-stricken farmers.

Thereupon the Bureau of Reclamation moved into North Dakota and reestablished the Buford-Trenton project west of Williston in Williams county.

By 1940, the water commission was so well organized that it could "step out" with an investigational program that embraced about 15

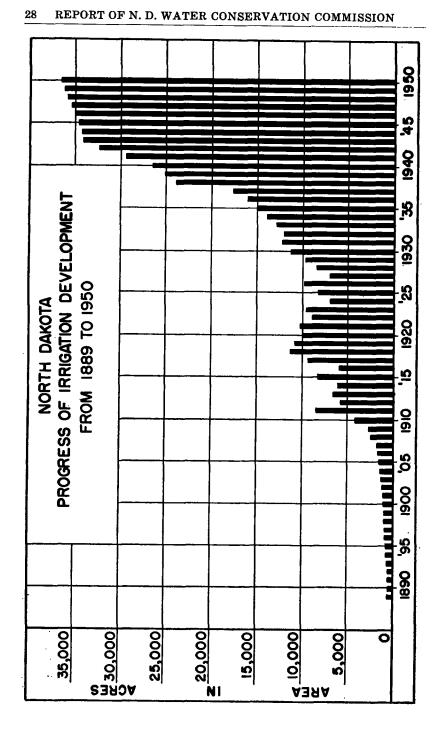


### STATE OF NORTH DAKOTA

dams, most of them in the western part of the state. Four of these dams are already completed—the Baldhill and Homme dams in the eastern half of the state, constructed by the army engineers, and the Heart Butte and Dickinson dams on the Heart river, in the Slope area, by the Bureau of Reclamation.

The Garrison dam, one of the key structures of the Pick-Sloan Missouri river development program, is under construction by the Corps of Engineers and more than 30 per cent completed. Engineers estimate its cost at \$202,000,000. The present program calls for completion by 1955.

Appropriations made by the legislature have enabled the state water commission to aid many worthy water conservation projects and to cooperate in the planning and construction of the Missouri basin development as authorized by congress.


The commission is the official state agency charged with the repair and maintenance of small dams located in the various sections of the state.

The commission is cooperating on a 50-50 basis with the U. S. geological survey on three phases of surveys, investigation and assembling data for the water development plan. These include topographic mapping surveys; hydrographic stream-flow measurements and underground water surveys. Underground water surveys and investigations are being conducted to make available datum on underground water for municipalities and communities.

Other appropriations for cooperative purposes with federal departments include preliminary and detailed field surveys and investigations. Similar work is being carried on by engineers of the water commission. The result is a state-wide study and investigation of North Dakota's potential water resources.

Water conservation works in North Dakota are progressing at a rapid pace since the 1937 legislature created the State Water Conservation Commission during the drought period of the 1930's. Few, if any, visualized at that time how far advanced project planning and dam construction would be today for the conservation of water and the number of storage dams constructed and under construction. The commission is proud of the splendid cooperation received from federal departments that have resulted in the building of the great engineering works being constructed by the Corps of Army Engineers and the Bureau of Reclamation. These structures will forever remain a monument in our history of water development in North Dakota.

The Missouri river basin development plan envisions the ultimate developments of all natural resources, including full water development and utilization of all potential works for the storage of surplus water and natural stream flows, including domestic, municipal, industrial, irrigation, power, conservation of wildlife, recreation, navigation and

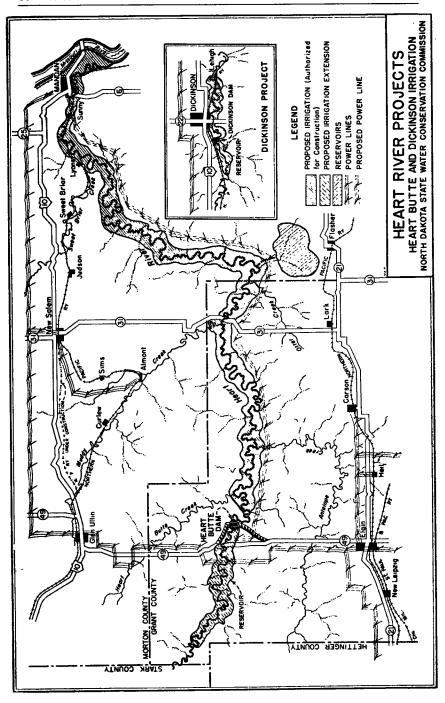


other multiple purposes. Development of water resources in North Dakota include storage works for irrigation, water for domestic, municipal, power development, restoration of Devils Lake, wildlife refuges, recreation and other uses. Members of the Commission are greatly concerned with the allocation and division of waters in the drainage basins of the Missouri, Souris, and the Red river of the North. At present, a compact commission is negotiating for allocating the Yellowstone river basin waters between Wyoming, Montana and North Dakota, and the International Joint Commission have directed their engineering committee to submit to the Commission a report on the present needs and future requirements of the Souris and Red rivers for the Dominion of Canada and the United States, before ratification. The Commission will submit their findings to the Water Commission for their consideration and approval.

(See 3-page N. D. Water Development map folded in this report.)

### ACTIVITIES OF

### NORTH DAKOTA STATE WATER CONSERVATION COMMISSION ENGINEER INVESTIGATIONS AND SURVEYS


In June, 1948, the State Water Conservation Commission commenced making detailed topographic surveys of the bottom lands in the James river valley, south of Jamestown, mapping the area extending to LaMoure to determine the land susceptible to irrigation development. To date, approximately 23,500 acres have been mapped. The mapping information data, showing contours and elevations gathered in this program, is of great importance and value in future planning and for potential irrigation developments. The amount of work completed is listed as follows: Mapping 23,500 acres extending over 60 river miles, 45 miles of levels were run for vertical control and 24 sheets completed on a scale of 1 in. equals 400 feet.

### **CEDAR RIVER**

Work on surveys on the Cedar and Cannonball rivers was resumed early in the spring of 1950 to extend the Water Commission river surveys of the mapped area during 1945-47, when 104,460 acres were mapped. This is a detailed topographic survey of river bottom area to determine the irrigable lands. Maps made from these surveys are of great value in classifying lands and for planning and designing of irrigation works by both federal and state agencies. Before commencing mapping operations, 111 miles of levels were run and 10 triangulation stations were set to establish vertical and horizontal controls, 104,460 acres being previously mapped on a scale of 1 inch equals 400 feet.

### GARRISON DIVERSION

During the latter part of 1948, survey parties from the State Water Conservation Commission ran 25 miles of levels for vertical controls and completed 1,000 acres of topographic mapping on a scale of 1 inch equals 400 feet, covering spot check areas east of Underwood and north



### STATE OF NORTH DAKOTA

of Washburn, these maps to be available in planning irrigation development from the Garrison reservoir by the Bureau of Reclamation.

Other surveys during the period include survey of

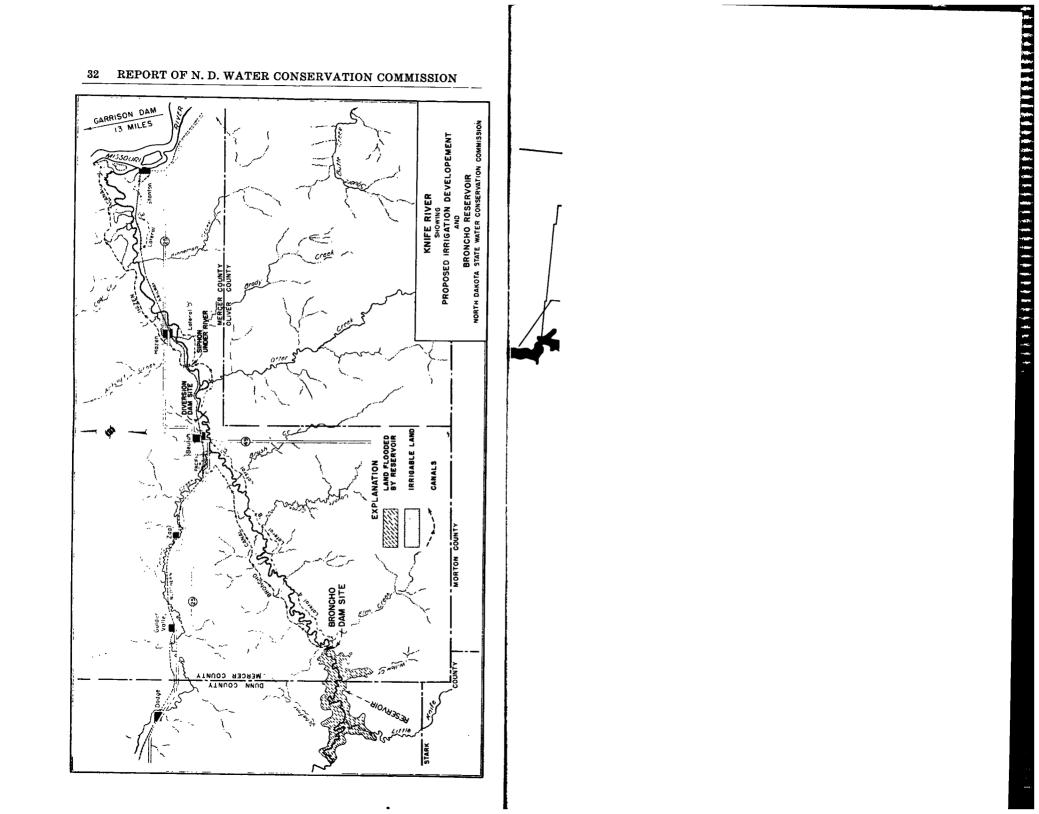
### HEART RIVER TRANSMISSION LINE

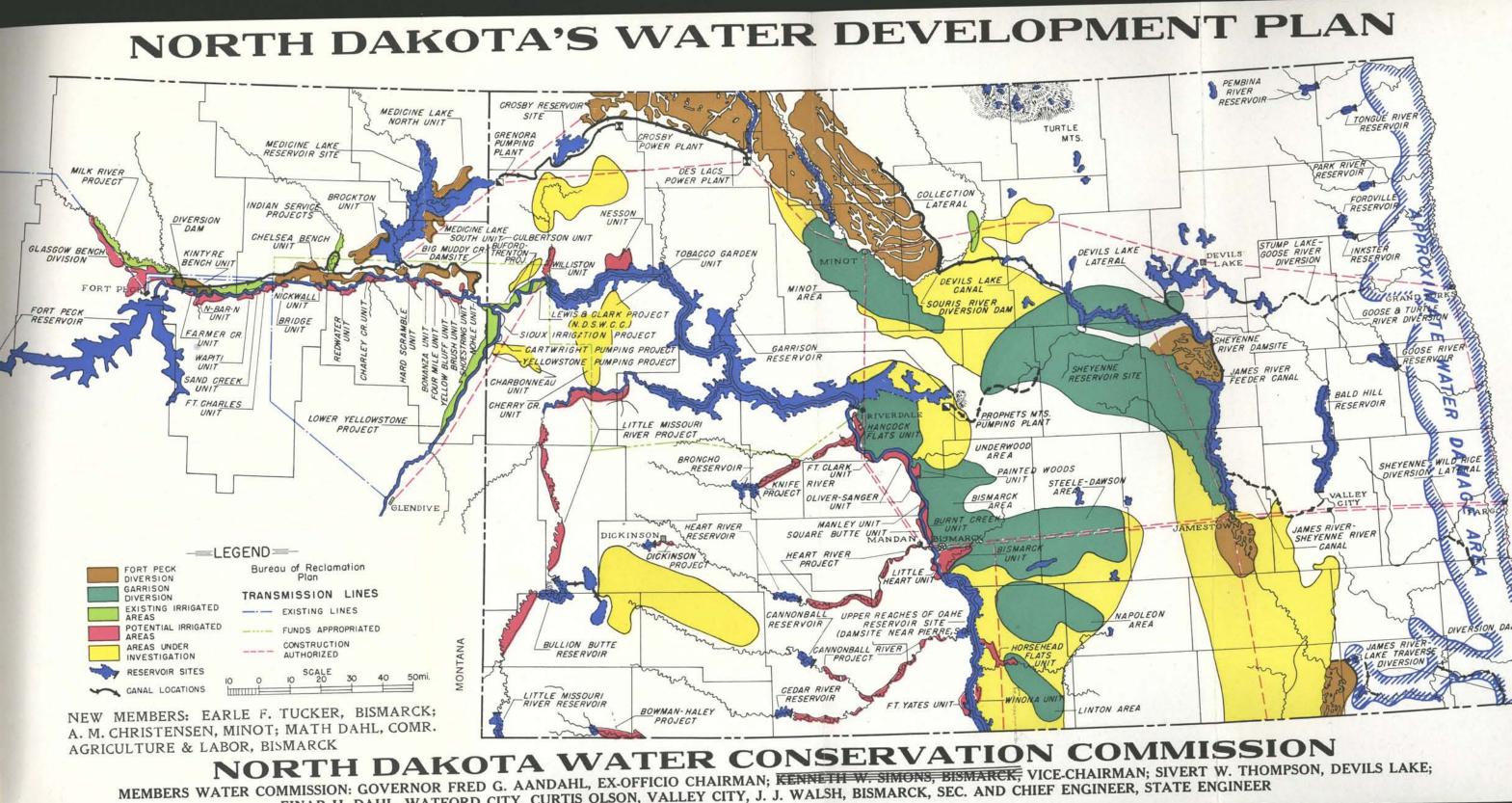
During the spring and summer of 1949 a survey party of the State Water Conservation Commission, in cooperation with the Bureau of Reclamation, ran 41 miles of location surveys for the Heart river transmission line.

### RUSH LAKE, SNOWFLAKE CREEK-PROJECT NO. 463

The State Water Conservation Commission at the request of local parties conducted an investigation and made surveys of Snowflake Creek, the main outlet channel of Rush Lake, in Cavalier county in the spring of 1949 to determine whether or not it is feasible to drain off the excess waters and maintain uniform lake levels. This information has been made available to local authorities, the Soil Conservation Service and the Corps of Engineers, for use in their basin-wide study of the Red river drainage problem.

### LAKE JUANITA-PROJECT NO. 443


At the request of local Lake Juanita citizens, investigations, surveys, mapping and establishing levels were conducted by the Water Commission engineers in cooperation with the State Game and Fish Department to determine the feasibility of raising the level of the lake to provide a local recreational area and for the propagation of a wildlife refuge. These surveys have been made available to local parties and state and federal agencies interested in this project.


### LAKE METIGOSHE

At the request of the State Historical Society and owners of property around the lake, surveys were made to determine whether there are additional storage areas available for maintaining uniform water surface levels at Lake Metigoshe and the feasibility of constructing works to control the excess inflow on some of the main channels and small lakes through regulation and release of water during critical dry periods.

### **GOLDEN LAKE**

During the summer of 1949, at the request of local organizations, the State Water Conservation Commission conducted surveys at Golden lake in Steele county in order to determine the feasibility of restoring Golden lake to approximately its original levels by diverting water from Beaver creek into Golden lake through a series of canals, culverts and natural water courses. Topographic maps and surveys and estimated costs of constructing the diversion works have been made available to local organizations in charge of planning the project.





EINAR H. DAHL, WATFORD CITY, CURTIS OLSON, VALLEY CITY, J. J. WALSH, BISMARCK, SEC. AND CHIEF ENGINEER, STATE ENGINEER

### MANDAN DEVELOPMENT FARM

The State Water Conservation Commission assisted the Bureau of Reclamation in surveying and laying out of the main irrigation and lateral ditches on the Mandan development farm on the Heart river, and in conducting surveys for preparing and leveling land for irrigation which is being operated by the Bureau in cooperation with the State Training School, demonstrating the value of irrigation in the production of stable crops and irrigated pasture.

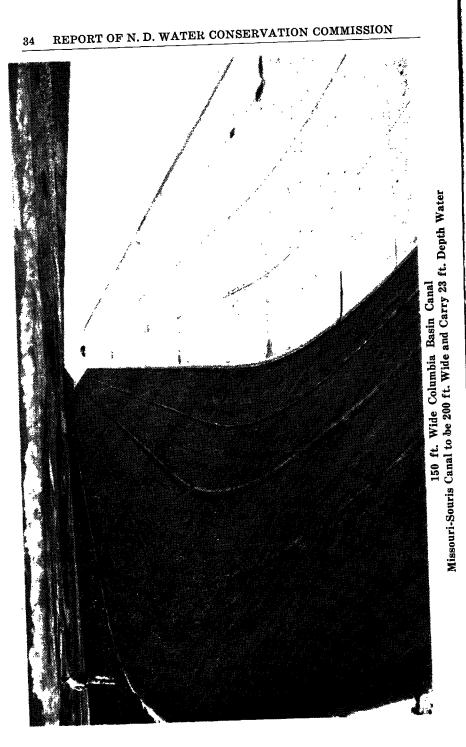
### **BALDHILL FISH PONDS**

During the fall of 1948, in cooperation with the Federal Wildlife Service and the State Game and Fish Department, a survey party from the State Water Conservation Commission surveyed and mapped the site for the proposed Fish Rearing Ponds below Baldhill dam on the Sheyenne river in Barnes county. This work included a detailed topographic map showing the layout and plan for the rearing ponds.

Other miscellaneous surveys were made in McKenzie and Hettinger counties to assist farmers in laying out their irrigation systems.

Drainage and irrigation surveys were made on the Lewis and Clark, Fort Clark and Sioux irrigation districts, the Burlington Disabled War Veterans rehabilitation project and the Eaton flood irrigation district.

### CHAPTER 63


### Senate Bill No. 71 (Committee on Appropriations) WATER CONSERVATION COMMISSION ADMINISTRATIVE FUND

### AN ACT

Making an appropriation into the "Administrative Fund" for the State Water Conservation Commission for general administration expenses, maintenance of existing dams and drainage channels, construction of needed drainage channels, planning and surveying projects, expenses of State Compacts and for the preparation of water conservation and irrigation projects for post-war construction and development.

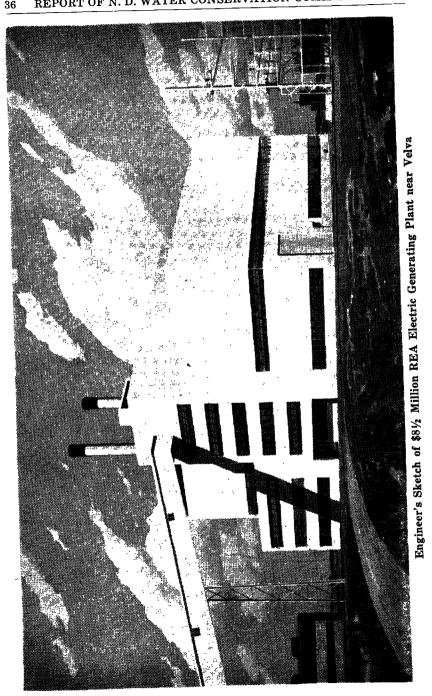
Be It Enacted by the Legislative Assembly of the State of North Dakota:

Section 1. APPROPRIATION.) There is hereby appropriated into the "Administrative Fund" of the State Water Conservation Commission out of any moneys in the State Treasury, not otherwise appropriated, the sum of \$606,400.00, or so much thereof as may be necessary for the payment of all general administration expenses of said commission, compensation of state engineer and expenses of all of its employees, for partial guarantee of construction bonds, maintenance of existing dams,



administrative expenses of state compacts and for the payment of costs of planning, surveying and preparing water conservation and irrigation projects, for construction, for post-war projects for the purpose of cooperating with the Bureau of Reclamation, the Corps of United States Army Engineers, the Soil Conservation Service, and any other federal agency, in planning the development of water resources of this State for the beneficial use thereof, which may be matched either in whole or in part by Federal or State agencies and governmental subdivisions of the State, for the biennium beginning July 1, 1949, and ending June 30, 1951, to-wit:

| Commissioners-Per Diem & Expenses                         | \$ 4,000.00  |
|-----------------------------------------------------------|--------------|
| Administration                                            | 30,000.00    |
| Maintenance of Existing Dams                              | 100,000.00   |
| International & Interstate—Commissioners' Conference      |              |
| Expenses                                                  | 12,000.00    |
| Topographic & Conservation, Cooperation with U.S.         |              |
| Geological Survey                                         | 30,000.00    |
| Hydrographic Surveys, Cooperation with U.S. Geological    |              |
| Survey                                                    | 20,000.00    |
| Salary-State Engineer                                     | 5,400.00     |
| Construction and Reconstruction Drains or Irrigation      | 150,000.00   |
| Engineering & Geological Surveys & Demonstrations         | 30,000.00    |
| Cooperation with U.S. Departments, Small Projects and for |              |
| Organizing Conservation & Irrigation Districts            | 135,000.00   |
| Other Investigations, Surveys, etc.                       | 90,000.00    |
| TOTAL                                                     | \$606,400.00 |
| A                                                         |              |


Approved February 23, 1949.

### ONE MILLION TONS QUARTZITE ROCK FOR GARRISON DAM CLOSURE

A rock deposit of hard quartzite sufficient for quarrying has been found in southwestern North Dakota between Elgin and New Leipzig. It is planned to use one million tons of this rock for the closure of the Garrison dam, which is now planned for 1953. This rock must be quarried in from two and a half tons to ten tons each to prevent it being rolled down stream by the force of the waters of the Missouri river. Many trainloads will be lined up ready for depositing from the construction bridge and forcing the river waters into the diversion canal and through the eight tunnels, where it can be controlled by gates.

### SANISH AND VAN HOOK CONSOLIDATE NEW TOWNSITE SELECTED

Because the rising waters of the Garrison reservoir would inundate portions or all of present townsites, the towns of Sanish and Van Hook, in Mountrail county appointed committees to represent them in selecting



a new joint townsite between the present locations, and will be aided in moving and securing of city water and other needed facilities by the Corps of Engineers. It will be necessary to re-route the Soo-line railway grade. A new bridge across the Missouri river is to be located on high approach about a mile south of the present site of Sanish, and will be approximately one mile long, to serve eastern McKenzie county people.

### NEW BRIDGE PLANNED TO REPLACE SANISH BRIDGE

The Corps of Engineers have released tentative plans for the replacement of the present Sanish bridge across the Missouri river. It is to be located 4300 feet south of the present bridge, on high ground, and will be 4,200 feet long, and will carry Highway No. 23.

The steel from the Elbowoods bridge will be used for the center span of the new bridge, with new deck truss spans at both ends. It will be 47 feet above the maximum operating level of the Garrison reservoir.

The piers will be of solid reinforced concrete, and the highest will rise 140 feet above the river bottom, and will be carried on steel piles driven to suitable foundation or bed rock.

The east approach is in the first small valley south of the present Sanish bridge. Approaches will require heavy grading and a cut through the bluff will reach a depth of more than 100 feet.

Present plans call for completion of the bridge in 1954.

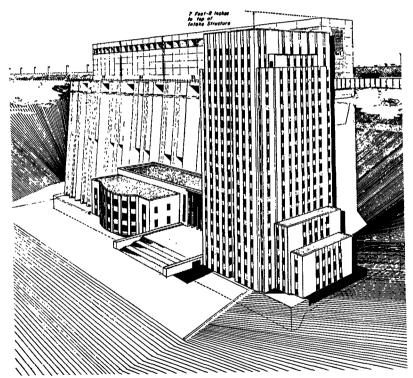
### **GARRISON HYDRO-ELECTRIC POWER AVAILABLE 1955**

Power from the Garrison dam will be available about 1955, engineers of the Bureau of Reclamation announced.

In the meantime, an \$8,000,000 REA cooperative steam plant is being built near Voltaire, N. D. to supply power within the next year or two for the central part of the state. Additional power will be available from government, public utilities and other sources.

Bureau engineers report that work is going ahead on the Minot-Devils Lake, Jamestown, Bismarck power loop which will transmit power 650 miles from the steam power plant as above.

Contracts have also been let for construction of a power line spur from Jamestown to Edgeley and to Forman. A three-way contract providing for mutual use of lines and emergency assistance has been signed by the Bureau, the coops. and the Ottertail Power Co.


In addition, construction of the 155,000 volt line from Ft. Peck to the Garrison dam has been completed. Several sub-stations along this route will be finished not later than October, 1950. The Montana-Dakota Utilities Co. is using portions of this line to transmit its own power at the present time.

# 38 REPORT OF N. D. WATER CONSERVATION COMMISSION

# DAM INTAKE STRUCTURE DWARFS STATE CAPITOL

The Garrison dam intake structure will be higher and longer than the state capitol. It is being constructed on the upper side of the dam and will hold the gates regulating the flow of water through the eight tunnels, under the dam.

This intake structure will be 259 feet high; the capitol is 241 ft. high. The structure is 501 ft. long, while the capitol's length is 389. The contract for the intake structure is for \$15,125,830.



Garrison Dam Intake Structure Capitol Imposed to Contrast Size

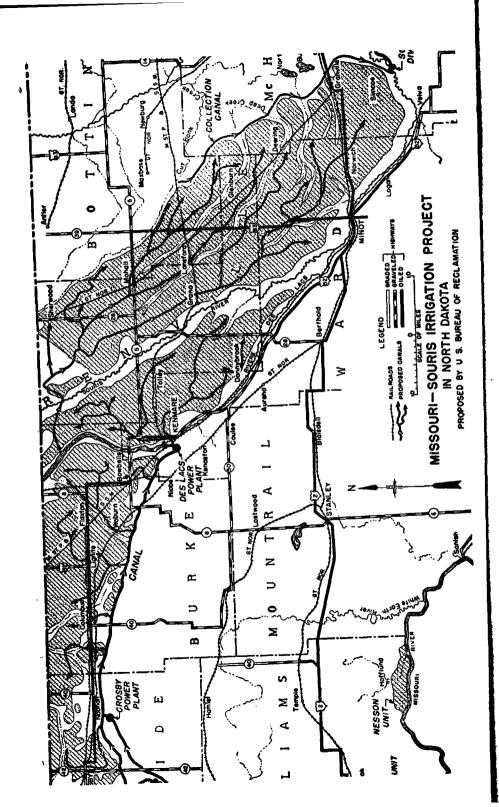
### THE BUREAU OF RECLAMATION

Bruce Johnson, Bismarck, district manager, is in charge of investigations on the Missouri-Souris project in the North Dakota division of the Bureau of Reclamation. Kenneth F. Vernon is Regional Director, Billings, Montana.

Missouri-Souris Diversion Project: The Missouri-Souris diversion plan is to divert water from the Missouri river below Fort Peck reservoir in Montana into North Dakota, onto Devils lake, the Sheyenne and James rivers. As planned, the proposed project provides for a diversion dam below Fort Peck, including a canal, storage reservoir, pumping and power plants to irrigate approximately 160,000 acres in Montana and about one million acres in North Dakota. Return flows will be collected and returned to the Souris river and diverted by canal to the Sheyenne river, where water will be used for irrigation, restoration of Devils lake, diversion into the headwaters of the James river for irrigation and municipal purposes and regulation and control of stream flows in the Sheyenne and Red rivers.

### HEART RIVER UNIT

Construction work on the Heart Butte dam was completed by the Bureau of Reclamation in December, 1949, and the Dickinson dam will be nearly completed in August, 1950. These two structures will provide flood control, conserve water for city and domestic uses, and also make available water for irrigation purposes.


The Heart river irrigation district has been formed to use water from the Heart river reservoir to irrigate approximately 14,000 acres. At the present time, the district is negotiating with the Department of the Interior on a repayment plan before work on the construction of the irrigation system begins. At Dickinson, there has been executed a repayment contract with the Bureau of Reclamation for supplying municipal water to the city. Future plans include the irrigation of approximately 1,000 acres of land to be supplied from the Dickinson reservoir.

### THE FORT CLARK UNIT

All preconstruction work has been completed on the Fort Clark Unit of the Missouri river. Here it is proposed to pump water from the Missouri to irrigate some 2,039 acres of land. An irrigation district has been organized, and the Bureau of Reclamation has presented the district with a draft of a repayment contract. The board of directors has approved the contract and the Secretary of the Interior has approved it as to form. An irrigation district election will be held on the question whether or not to accept the contract. Upon acceptance of the repayment contract, the Bureau will proceed with construction.

### CARTWRIGHT IRRIGATION DISTRICT

Progress is being made in planning construction of above irrigation district in McKenzie county under the supervision of the Bureau of



**Reclamation.** The irrigation district has been organized and preconstruction surveys have been completed. This project is located south of Cartwright on the east side of the Yellowstone river and will provide for irrigation of 920 acres of land.

### LOWER YELLOWSTONE PUMPING PROJECT

The Lower Yellowstone Pumping project is an organized irrigation district and is now attached to the Sidney unit of the Yellowstone division to be constructed by the Bureau of Reclamation. The lands to be irrigated on this project are located in North Dakota, the water to be supplied from the Yellowstone river. The work includes enlargement of the present pumping facilities in Montana, and the construction of the main canal and laterals. The project, as originally planned, was to irrigate approximately 1800 acres.

### JAMESTOWN DAM

The Bureau of Reclamation has been charged with the construction of the Jamestown dam, located approximately two miles above Jamestown. This structure is to provide storage of flood waters and regulation of stream flows for protecting the City of Jamestown. During 1950, Jamestown was subjected to damage from floods from both the Pipestem and James rivers. Estimates show that the damage to the city was approximately 2½ million dollars. Congress has recently authorized \$750,000 for starting construction work of the dam.

### SHEYENNE AND JAMES RIVERS DIVERSION

Return flows from the Missouri-Souris area are to be diverted into the Sheyenne river reservoir from which water is to be diverted to restore Devils lake and provide municipal water for 19 cities along the Sheyenne and Red rivers. Water is also to be diverted south from the Sheyenne dam into the James river valley to irrigate approximately 55,000 acres of the New Rockford unit, to be re-regulated by Jamestown reservoir and for the irrigation of 22,000 acres of the Jamestown unit and 30,000 acres in the Oakes unit.

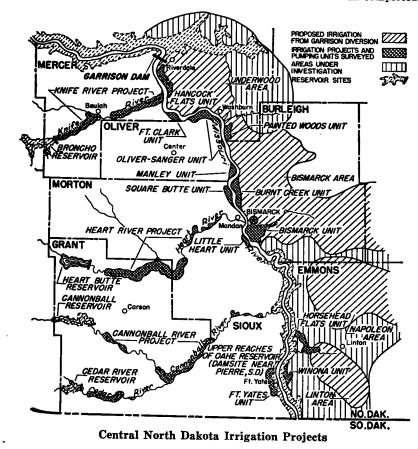
### **OTHER BUREAU PROJECTS**

Other work of the Bureau of Reclamation includes development of irrigation on tributary streams including the Knife, Heart and Cannonball rivers. This work will include pumping units, power lines and irrigation distribution systems. Continuing surveys and investigations are being made on the Little Missouri river and diversion and use of water from the Garrison reservoir. The Bureau plans to complete construction of the lateral and drainage ditches this year on the lower division of the Buford-Trenton project, located near Williston.

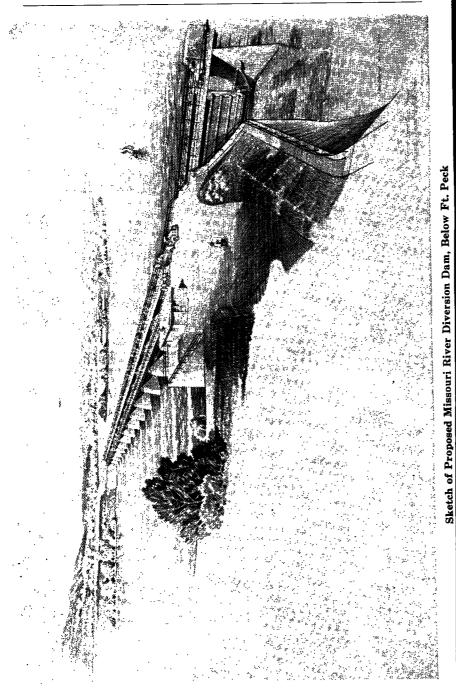
### INVESTIGATIONS—BUREAU OF RECLAMATION NORTH DAKOTA

**Cannonball Division:** Semidetailed land classification was completed on Thunderhawk unit and a reconnaissance of lands above the dam was made. Several alternate sites for Thunderhawk dam were selected.

# 42 REPORT OF N. D. WATER CONSERVATION COMMISSION


Ä ż Bismarck, of north miles 14 about located Projects, Pumping River Missouri ÷. of Ş81 Unit Wogansport

Garrison Division: Detailed land classification on the block and spotcheck areas in the Coleharbor unit were classified in detail. A general summary of this work is being prepared.


Knife Division: Detailed land classification was to be revised. Foundation drilling and material exploration at Broncho dam site were to be resumed.

Missouri-Souris Division-Crosby-Mohall Unit: Land classification, economic studies, surveys, and estimates were to be completed on the Bowbells block area and a detailed report prepared. Operation of Bowbells development farm was to continue.

Work continued on the Crosby-Mohall unit, including continued investigations of the entire unit, compiling data for the Bowbells block report, and continued operation of the Bowbells development farm. In the area west of Des Lacs river, the semidetailed land classification was completed



### 44 REPORT OF N. D. WATER CONSERVATION COMMISSION



on 493,000 acres. On the Bowbells block area, land classification was completed, and infiltration and drainage studies received special attention.

Missouri-Souris-Devils Lake Unit: An analysis of quality of water in Devils Lake was to be made. Sheyenne canal was to be surveyed. Operation studies were to be made of Devils lake and Sheyenne reservoir.

A water sampling program was started on Sheyenne and Red rivers in cooperation with the State of North Dakota. Field work on location of Sheyenne canal were completed. The operating schedule for raising the water level of Devils lake and Sheyenne reservoir was started.

Missouri-Souris-Jamestown Unit: Preconstruction surveys were to continue at Jamestown dam and reservoir, and surface exploration was to be undertaken to locate a possible buried channel between the James river and Pipestem creek. Land resource studies of the Jamstown unit were to continue.

North Dakota Pumping Division-Painted Woods Unit: Work was to continue on economic studies and surveys on the pumping plants and lateral systems.

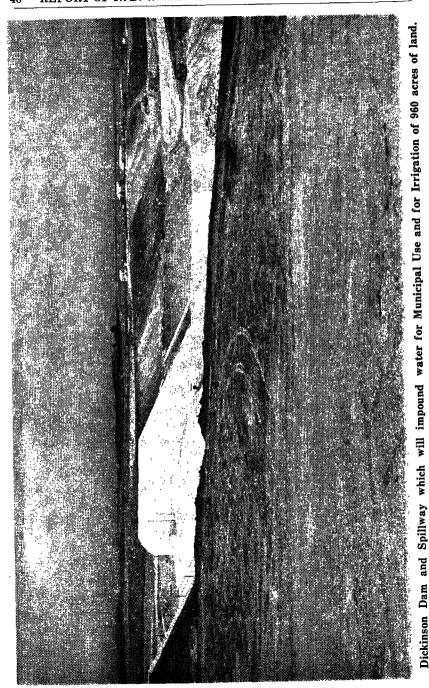
Drainage requirements and land classification have been reviewed, and a program of development of ground-water sources for irrigation in lieu of pumping from the Missouri river has been started.

North Dakota Pumping Division: Pumping plant studies will be made to determine the best type and location for plants. Water requirements and economic studies will be made. Studies will be made of Hancock Flats, Oliver-Sanger, and Square Butte units.

### **PROPOSED IRRIGATION PROJECTS**

### WILLISTON PUMPING IRRIGATION UNIT

Included in the plans of the Bureau of Reclamation is the construction of a pumping irrigation project of approximately 7,000 acres in the valley of Little Muddy Creek and on the benchlands to the west, practically surrounding the city of Williston, in Williams County, North Dakota.


### THE NESSON VALLEY PROJECT

Located about 26 miles east of Williston, in Williams and south of Ray in Mountrail counties, is what is called the Nesson Valley Pumping Project, of about 9,600 acres. This has been surveyed and lands classified, and is included in the construction plans of the Bureau of Reclamation for the development of the Missouri river diversion areas.

### UNDEVELOPED MISSOURI RIVER PROJECTS

In addition to the Williston Pumping unit, Nesson valley project, and the recently organized Fort Clark irrigation district, some other projects are included in the Missouri river development plan. These extend from below the Garrison reservoir to the South Dakota state line, and range in size from approximately 2,000 to 9,000 acres. They

# 46 REPORT OF N. D. WATER CONSERVATION COMMISSION



include the following projects: Manhaven, Hancock Flats, Oliver-Sanger, Painted Woods, Manley, Wogansport, Square Butte, Burnt Creek, Little Heart, Horsehead Flats, Winona and Bismarck projects.

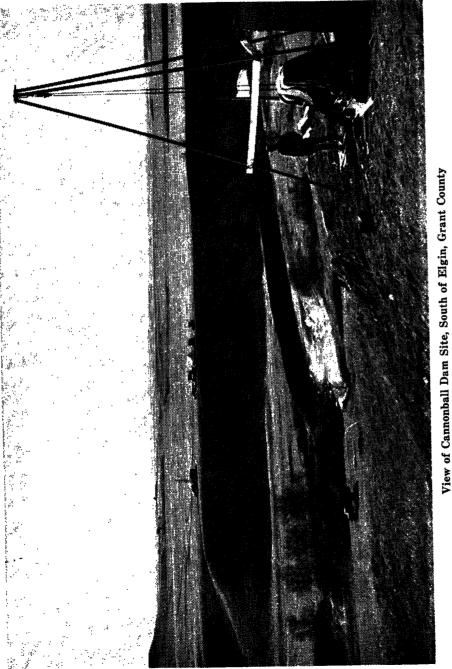
### POWER LINE CONSTRUCTION

Government REA loans had enabled rural organizations to wire and equip a large number of farms in the state, with connecting lines to power centers. Garrison hydroelectric power may not be available before 1955. Appropriations of about \$2,250,000 was made for 1950, and contracts authorized for an additional \$2,000,000 in 1951 for power transmission line construction in North Dakota. And, an additional \$8,500,000 was appropriated for a loan to REA cooperatives to build a steam generating power plant at a coal mine near Voltaire, North Dakota, to provide REA lines with power, pending the availability of Garrison power, and to be used as a stand-by plant for possible future needs.

### FLOOD CONTROL

The control of floodwaters is one of the phases of the big water development plans for North Dakota. During years of excessive precipitation and snow run-offs, the Red River valley has suffered crop and property damage running into millions of dollars from floodwaters. The State Water Conservation Commission has been authorized by the legislature to ccoperate with local and government agencies for the organization of drainage districts and the construction of local drainage ditches. This program has done much to alleviate the situation.

The Corps of Army Engineers after conducting a survey of the Red River drainage area in North Dakota and Minnesota recommended to congress control measures, including dams and reservoirs along the tributaries in a six to ten year construction program, with an estimated cost of six to ten million dollars, in addition to the Bald Hill dam and reservoir and the Park River dam and reservoir previously authorized. Work has started on the valley program.


### SNOW REMOVAL OPERATIONS IN THE SOUTHWEST MOTT AREA

Following the spring blizzard in April, 1950, the State Water Conservation Commission furnished equipment and personnel in cooperation with the State National Guard for snow removal operations in the Mott area at the request of the governor. Heavy snowfall and blizzards in this area blocked all state and county roads to such an extent that all traffic in the area was stalled, causing great hardship on the people affected. During this period, the crew from the State Water Commission opened approximately 35 miles of secondary road, making it possible for the farmers to haul feed and provisions from town for domestic and livestock uses.

### **1950 FLOODS BREAK RECORDS, CAUSE MUCH LOSS**

The snow run-off in the spring of 1950 was the heaviest in the memory of man and caused much damage and property loss in different areas over

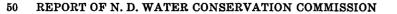
48

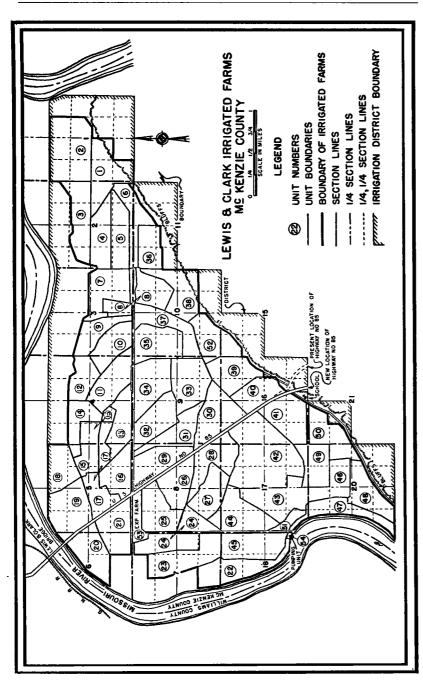


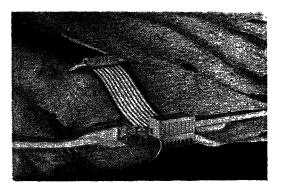
### STATE OF NORTH DAKOTA

the state. At the request of Governor Aandahl, the President allocated \$250,000 for North Dakota flood relief from his emergency fund. Government weasels and jeeps were shipped in to several key points to aid in the distribution of food to distressed communities where the deep snow and excessive floodwaters prevented getting needed supplies. Some food and stock feeds were transported by plane for emergency relief in some areas. Repair of washed out bridges and approaches was a heavy drain on county road and bridge funds. Many branch railroad lines were badly damaged, requiring suspension of train service in some instances as long as 60 days. Some damage on main lines required only temporary delays of main line trains. Surveys made of the damage in North Dakota by floodwaters varied, some estimates being as high as eighteen million dollars over the state. The flood damage on the Red river valley, especially from Grand Forks to Grafton and Pembina and on to the city of Winnipeg in Manitoba, was especially severe.

### **IRRIGATION PROJECTS, LOANS FOR FINANCING**


The Farmers Home Administration has government funds available to help finance by long-term, low-interest loans to farmers or groups of farmers to install water facilities on their farms for small irrigation projects or other water facilities needed to make the farm more profitable. This would enable either an individual or a group of farmers to install small irrigation projects and pay for same over a period of years from the increased income. Loans to individuals are usually limited to \$5,000, but irrigation district groups of farmers can finance systems costing less than \$50,000. and spread payments over twenty years or even more. This should materially aid farmers desiring to install sprinkler irrigation pumps and equipment. Loans are even made to tenant farmers where they hold a long-term lease to the land, and can be made only when no other source of credit for this type of loan is available.


### **IRRIGATION POTENTIAL IN NORTH DAKOTA**


Governor Fred G. Aandahl, at a meeting held in Flaxton, stated that increasing irrigation is a movement to meet the needs of a nation expanding in population; that irrigation will provide a sustaining livelihood for a part of the nation's population and help provide the country with needed foodstuffs now in short supply.

He predicted that particularly in the Missouri-Souris area that the change will not be a wholesale shifting over from dryland farming to an irrigation economy in the region. He said the coming of more irrigation would bring a gradual change to new high-yielding crops which would supplement the present dryland farming and increase the income and stability.

He emphasized that if North Dakota could add 20,000 to 30,000 acres of land under irrigation each year for a period of years, that the development could achieve a steady, sound, constructive program for the region.

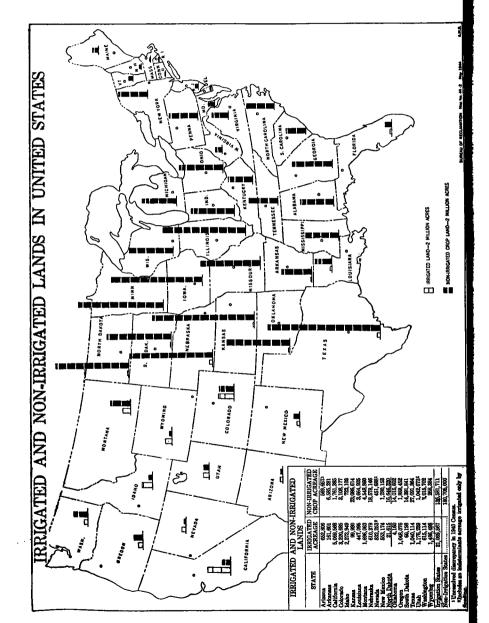






Proposed Grenora, N. D. Pumping Plant

On the Missouri-Souris million-acre irrigation project, plans include what will be the largest pumping plant in the world. Eight large electric motors will pump the water up about 100 feet over the divide and into the main canal. This canal will be 200 feet wide at the top, 150 feet at the bottom, and built to carry 23 feet of water, enough to carry an oceangoing Liberty Ship.


### **IRRIGATION RETURNS ON LOWER YELLOWSTONE**

Forty years of experience on the Yellowstone Irrigation District, about 20,000 acres of which is in McKenzie County, North Dakota, gives a reliable index as to what can be expected of irrigated lands in North Dakota. In 1947 the average returns per acre on this irrigated tract with ideal production conditions and world war high prices was \$80.17, with some returns from sugar beet fields averaging as high as \$124 per acre. In 1949 reduced yields and lower prices made the average gross returns per acre \$54.33. However, this was two and a half times the gross returns under dry land farming.

### YIELDS UNDER IRRIGATION On the Lewis & Clark Experiment Farm Arlon G. Hazen, Superintendent

High value crops for cash income and high yielding crops for livestock feed must have preference under irrigation because of the limited acreage, the expense, and the amount of labor required to produce a crop under irrigation. Most irrigated, family size units, range between 100 and 160 acres of irrigable land. It has been demonstrated that a farmer can make a comfortable living for himself and family from this acreage providing he plans his farming operations well and makes the best possible use of the land each year.

The results tabulated are not conclusive since they represent only the 1948 and 1949 seasons. They are, however, highly significant and the procedure will give reliable information when an average of several seasons results are accumulated.



### STATE OF NORTH DAKOTA

### CROP YIELD SUMMARY, 1948, 1949 (See p. 33 Irr. Trials in Western North Dakota)

| · -         |              |           |            | Yield    |
|-------------|--------------|-----------|------------|----------|
|             |              | Rainfall  | Irrigation |          |
|             | Year         | inches    | inches     | bu.      |
| Potatoes    | 1948         | 7.55      | 0.00       | 241.4    |
|             |              | 7.55      | 3.00       | 258.0    |
|             | 1949         | 5.50      | 0.00       | 49.4     |
|             |              | 5.50      | 14.9       | 219.9    |
|             |              | 5.50      | 17.7       | 272.1    |
| Oats        | 1948         | 7.55      | 0.00       | 65.0     |
|             |              | 7.55      | 2.75       | 84.1     |
|             |              | 7.55      | 7.48       | 17.6     |
|             | 1949         | 4.95      | 0.00       | 20.2     |
|             |              | 4.95      | 7.35       | 96.9     |
|             |              | 4.95      | 15.15      | 100.5    |
| Barley      | 1948         | 7.40      | 0.00       | 46.0     |
| -           |              | 7.40      | 2.50       | 56.7     |
|             |              | 7.40      | 6.60       | 55.1     |
|             | <b>194</b> 9 | 4.95      | 0.00       | 20.4     |
|             |              | 4.95      | 7.10       | 56.3     |
|             |              | 4.95      | 16.90      | 57.5     |
| Corn        | 1948         | 7.55      | 0.00       | 46.8     |
|             |              | 7.45      | 1.50       | 57.5     |
|             |              | 7.45      | 3.84       | 63.5     |
|             | 1949         | 5.50      | 0.00       | 54.3     |
|             |              | 5.50      | 3.90       | 56.1     |
|             |              | 5.50      | 6.93       | 58.3     |
|             |              | 5.50      | 10.69      | 55.5     |
| Sugar Beets | 1948         | 7.55      | 0.00       | 13.7     |
|             |              | 7.55      | 2.75       | 15.2     |
|             |              | 7.55      | 12.56      | 18.0     |
|             | 1949         | Stand une | ven—no tes | st made. |
|             |              |           |            |          |

### WORLD ACREAGES UNDER IRRIGATION

As given by the Encyc. Brit. Vol. 12, p. 262:

|     |                  | acres      |     |                  | acres     |
|-----|------------------|------------|-----|------------------|-----------|
| 1.  | India,           | 55,000,000 | 13. | Siam             | 2,000,000 |
| 2.  | U.S. of America  | 24,000,000 | 14. | Morocco          | 1,500,000 |
| 3.  | Russia in Europe | 8,000,000  | 15. | Australia        | 1,000,000 |
| 4.  | Japan            | 7,000,000  | 16. | China            | 1,000,000 |
| 5.  | Egypt            | 6,000,000  | 17. | South Africa     | 800,000   |
| 6.  | Mexico           | 5,700,000  | 18. | Peru             | 800,000   |
| 7.  | Italy            | 4,500,000  | 19. | Canada           | 400,000   |
| 8.  | Spain            | 3,500,000  | 20. | Algeria          | 400,000   |
| 9.  | France           | 3,150,000  | 21. | Phillipines      | 250,000   |
| 10. | Java             | 3,000,000  | 22. | Hawaii           | 200,000   |
| 11. | Chili            | 3,000,000  | 23. | British Columbia | 100,000   |
| 12. | Argentina        | 2,000,000  | 24. | Cuba             | 50,000    |

India is now ahead of the combined acreages of the six next nearest nations that have given irrigation the most attention. Torrential rains flood many areas which at other seasons of the year experience extremely dry weather which kills crops and causes famine. Multitudes have died

\_\_\_\_



of hunger in many years when the rainfall was ample but did not come in the crop growing season. Two comparatively recent years of terrible summer droughts and famine caused the death of more than one and a half million people. For more than a decade India has by its irrigation works prevented the recurrence of famine, which was so common for past generations.

### NORTH DAKOTA FARM LANDS

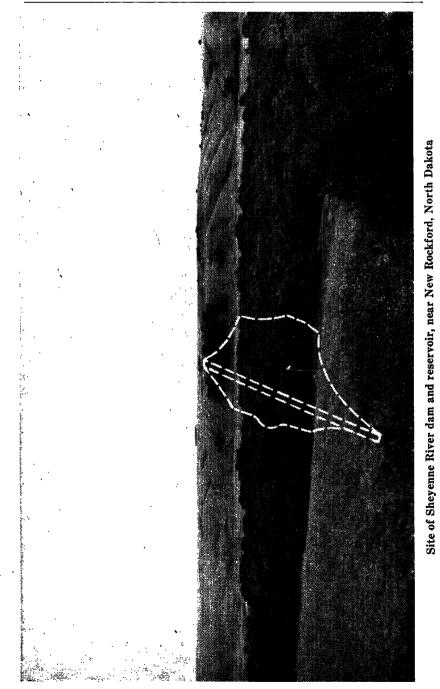
According to a recent study by the Bureau of Agricultural Economics, individual farmer owners hold 70 per cent of the farm land, with an average of 244 acres per farm.

In North Dakota, about 41 million acres of land were in farms in 1945. Of this, 89 per cent was owned by individuals, four per cent by corporations, six per cent by the government and a little less than one per cent by Indians. Ninety per cent of the owners are men.

About eight per cent of owners in North Dakota held units of 1,000 acres or more, 20 per cent 500 to 999 acres, 44 per cent 220 to 499 acres and 22 per cent 140 to 219 acres.

The North Dakota State Department of Agriculture reports the total acreage into crops for 1949 was 16,705,814. The largest acreage cropped was in 1945 and totaled 17,311,190 acres.

### \$30,000 ALLOTTED SOIL SURVEYS


The State Water Conservation Commission set aside \$30,000 to match a like amount of government funds for soil survey work on the Missouri-Souris project, the work to be done under the direction of Dean H. L. Walster of the Agricultural College and cover a two-year period. The Department of Agriculture is furnishing four trained men from the bureau of plant industry, to work with four men from the Agricultural College force, in cooperation with engineers of the bureau of reclamation.

The College was without funds it could use for this purpose and appealed to the Water Commission for assistance. A study will be made of the possibility of reclaiming fertility to saline and alkaline soils and whether underground drainage difficulties in the Bowbells area would prevent the use of these lands for irrigation. If not, whether other possible irrigated areas can be found in the Missouri-Souris project to offset the land found unsuitable for irrigation. Preliminary surveys indicated that this could be done.

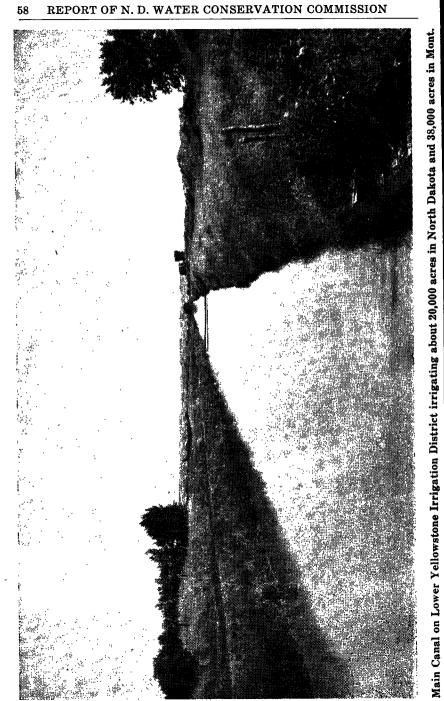
### SPRINKLER IRRIGATION MAY AID MISSOURI-SOURIS AREAS. BY BUREAU OF RECLAMATION

A revised bulletin under above head was printed and distributed among its employees and others interested in December, 1949, which discusses advantages and disadvantages of irrigation by this method, and possible uses where it may be more advantageous than gravity irrigation.

### 56 REPORT OF N. D. WATER CONSERVATION COMMISSION



The bulletin comments that intensive and widespread interest in the use of sprinkler systems has continued. Many irrigation farmers wish to install sprinklers in order to improve their irrigation application, conserve water, and because of more convenient working hours, and where irrigation by sprinklers is the only feasible method because of special conditions of soil, topography, or crop requirements, and to minimize seepage.


It states, that sprinkler irrigation has a real and significant place in bringing improved use of project resources and increased financial success, where conditions do not lend themselves to surface methods of application, but that attempts to use sprinklers on inadequate information may result in unsuccessful installations and loss.

Sprinkler irrigation is a means of conserving water and thus increase the area that can be developed. The possibility of increasing crop production by sprinkler irrigation is great.

The bulletin states "Of the many thousands of acres of land in the Missouri-Souris project in North Dakota, large portions may be irrigated by sprinklers that cannot be successfully irrigated by surface methods. Also, much larger acreages of the land may be irrigated by sprinkling than by surface methods. This land is in a glaciated area topographically and partly unsuited to surface irrigation."

### DEVILS LAKE WILL BE GREAT RECREATION CENTER

One of the most attractive developments, recreation-wise, is the restoration of Devils Lake. From a chemical-filled body of near stagnant receding water to a heautiful fish-inhabited lake, gives a world of recreational possibilities which will make it a center of attraction for people traveling many miles. Since 1867 this lake has had a gradual recession. Return flow waters from the Missouri-Souris project are to be diverted to Devils Lake which will freshen the waters and at the proposed water level of 1425 feet will have an area of about 52,000 acres.



# LOWER YELLOWSTONE IRRIGATION DISTRICTS 1 and 2 In Montana and North Dakota 45,026 Acres Livestock Inventories

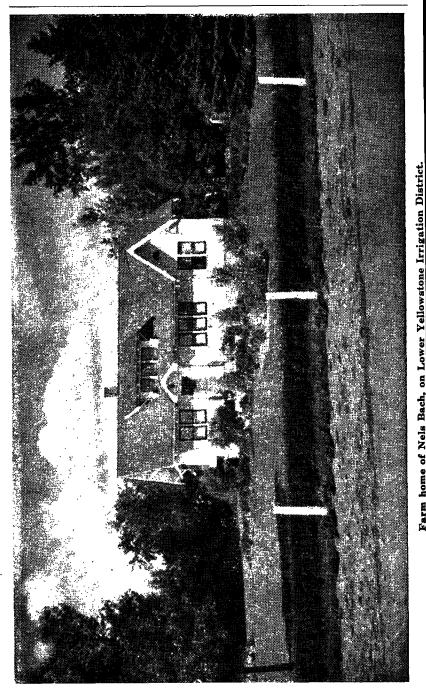
1948 and 1949

|                   | Number  | December 31, 1948<br>Value T | 1948<br>Total value | Number | December 31, 1949<br>Value To | 1949<br>Total value |
|-------------------|---------|------------------------------|---------------------|--------|-------------------------------|---------------------|
| Horses-Mules      | 275     | \$ 33.30                     | \$ 9,159.00         | 272    | \$ 26.43                      | \$ 7,189.00         |
|                   | 1.710   | 113.14                       | 193,475.00          | 2,305  | 106.35                        | 245,138.00          |
| Cattle. Feeders   | 7,113   | 131.03                       | 932,010.00          | 4,047  | 106.30                        | 430,201.00          |
| Cattle, Dairy     | 1.427   | 141.58                       | 202,035.00          | 1,468  | 111.86                        | 164,215.00          |
| Purebred Sires    | 64      | 292.84                       | 18,742.00           | 98     | 247.70                        | 24,275.00           |
| Grade Sires       | 12      | 124.58                       | 1,495.00            | 80     | 140.63                        | 1,125.00            |
| Sheep. Farm Flock | 8,251   | 8.46                         | 69,820.00           | 1,891  | 13.90                         | 43,529.00           |
|                   | 103,204 | 14.69                        | 1,515,843.00        | 82,053 | 14.87                         | 1,220,515.00        |
| Hogs              | 2,436   | 30.64                        | 74,635.00           | 2,173  | 17.80                         | 38,679.00           |
| Turkevs           | 497     | 8.02                         | 3,989.00            | 106    | 4.73                          | 501.00              |
| Chickens          | 24,327  | 1.08                         | 26,166.00           | 26,818 | .93                           | 24,874.00           |
| Other Fowl        |         |                              | 344.00              |        |                               | 426.00              |
| Bees, hives       | 838     |                              | 12,633.00           | 833    |                               | 12,970.00           |
| Totals            |         |                              | \$3,060,346.00      |        |                               | \$2,196,399.00      |

STATE OF NORTH DAKOTA



Hereford Steer Feeders from Yellowstone Irrigation District Top the Market


# 61 and LOWER YELLOWSTONE IRRIGATION DISTRICTS 1 In North Dakota and Montana

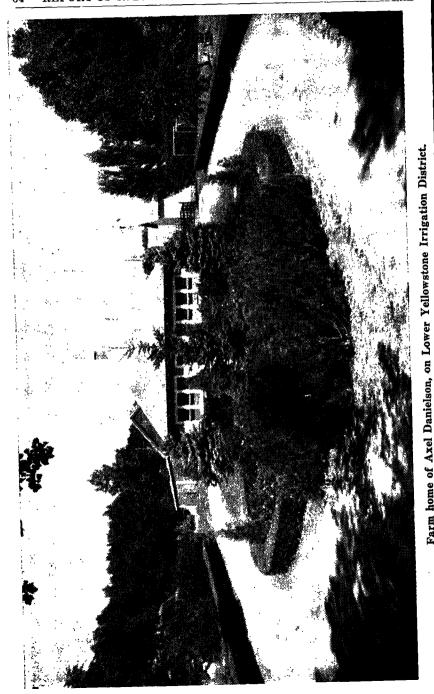
|              |               |         | STATE                                                | OF NOR                             | TH        | I DAKOTA                                                                                                             | _             |                                                                     |                                         |                                         | 61                                              |
|--------------|---------------|---------|------------------------------------------------------|------------------------------------|-----------|----------------------------------------------------------------------------------------------------------------------|---------------|---------------------------------------------------------------------|-----------------------------------------|-----------------------------------------|-------------------------------------------------|
|              |               | Total   | \$ 686,950.40                                        |                                    | 18,561.35 |                                                                                                                      | \$ 319,820.50 |                                                                     | 120,384.95<br>983,272.61<br>266,619.73  | \$2,666,195.73<br>54.33                 |                                                 |
|              | ) 4 9<br>Acre | alue    | 27.90<br>29.21<br>25.77<br>44.30<br>25.57            | 30.76<br>15.79<br>33.92            |           | 24.17<br>8.54<br>5.82<br>4.20<br>10.00                                                                               | <b>M</b> 77   | 51.21<br>110.75<br>70.35                                            | 91.84                                   |                                         | !                                               |
|              | 194<br>Av. A  | Yield V | 31.0<br>34.36<br>42.96<br>24.61<br>28.41             | 1.23<br>2.19<br>10.12              |           | 2.35<br>1.18<br>1.45<br>5.10                                                                                         |               | 9.06<br>210.0 1                                                     | 10.3                                    |                                         | :                                               |
|              |               | Total   | \$1,080,936.51                                       |                                    | 74,733.60 |                                                                                                                      | \$ 225,873.50 |                                                                     | 74,610.90<br>1,482,465.00<br>498,037.25 | \$3,833,775.28<br>80.19                 |                                                 |
|              | 4 7<br>Acre   | Value   | 55.31<br>52.76<br>44.71<br>74.63<br>42.04            | 30.37<br>24.00<br>61.27<br>47.78** |           | 28.87<br>5.98<br>7.83<br>7.83<br>7.83<br>7.83<br>7.83<br>7.83<br>7.83<br>7.8                                         | 00.2          | 45.04<br>59.00<br>83.27                                             | 126.34                                  |                                         |                                                 |
|              | 194<br>Av.    | Yield   | 39.51<br>35.17<br>35.17<br>35.71<br>42.04            | 1.52<br>4.00<br>10.21<br>17.42**   |           | 1.92<br>1.00<br>6.72                                                                                                 |               | 9.5<br>65.55                                                        | 11.25                                   |                                         |                                                 |
| 45,026 Acres |               | Total   | 408,226.00                                           |                                    | 14,003.00 |                                                                                                                      | 259,809.00    |                                                                     | 52,551.00<br>1,482,465.00<br>463,260.00 | 2,680,320.00<br>57.13                   | (**Peas)                                        |
|              | 4 5<br>Acre   | Value   | 28.41<br>19.44<br>22.18<br>37.16<br>16.60            | 25.59<br>19.29<br>19.40            |           | 22.40<br>6.41<br>7.18<br>10.46<br>12.00                                                                              | 10.7          | 65.76<br>53.31<br>71.88                                             | 90.15                                   |                                         |                                                 |
| 4            | 1 9 4<br>Av.  | Yield   | 33.4<br>19.4<br>26.5<br>30.2                         | 1.2<br>3.2<br>7.0                  |           | 1.9<br>3.6<br>5.2                                                                                                    |               | 11.1<br>*88.8                                                       | 9.6                                     |                                         | t of pro                                        |
|              |               | Total   | 512,460.00                                           |                                    | 9.433.00  |                                                                                                                      | 291,422.00    |                                                                     | 99,491.00<br>1,558,883.00<br>460,256.00 | 2,931,996.00<br>62.69                   | yields and returns for 1945 on part of project) |
| :            | 4<br>Acre     | Value   | 32.93<br>34.91<br>27.12<br>39.81<br>22.47            | 23.01<br>13.14<br>29.15<br>7.03    |           | $\begin{array}{c} 22.61\\ 7.17\\ 4.74\\ 13.17\\ 2.22\\ 12.00\\ 12.00\\ 00\\ 00\\ 00\\ 00\\ 00\\ 00\\ 00\\ 00\\ 00\\$ | * 00.7        | 35.84<br>120.02<br>58.36                                            | 111.28                                  |                                         | turns fo                                        |
|              | 1 9 4<br>Av.  | Yield   | 41.2<br>34.9<br>34.9<br>30.6<br>44.9                 | 1.1<br>3.1<br>15.0<br>15.0         |           | 2.1<br>1.2<br>6.6                                                                                                    |               | 9.7<br>120.0                                                        | 1.11                                    |                                         | and re                                          |
|              |               | Crop    | CEREAL:<br>Barley<br>Corn<br>Oata<br>Vheat<br>Speltz | SEED:<br>Alfalfa                   | Totals    | FORAGE:<br>Alfalfa -<br>Other Hay<br>Corn Fleage<br>Corn Sileage<br>Sugar Deet tops<br>Natural Pasture               | Totals        | VEGETABLES:<br>Beans, commerce<br>Potatoes, white<br>Gardens, truck | Totals<br>Sugar beets                   | TOTAL VALUE CROPS<br>AV. VALUE PER ACRE | *(Hail damage reduced yiclds                    |

(\*\*Pers) \*(Hail damage reduced yields and returns for 1945 on part of project)

60 **REPORT OF N. D. WATER CONSERVATION COMMISSION** 

62 REPORT OF N. D. WATER CONSERVATION COMMISSION




### LOWER YELLOWSTONE IRRIGATION IN MONTANA AND NORTH DAKOTA

Probably the best index as to what may be expected from irrigated lands in North Dakota is the Lower Yellowstone Irrigation District of 58,324 acres, of which about 20,000 acres is in McKenzie County, North Dakota, and the balance in Montana. The district has been in operation for 40 years, so has passed the experimental stage. It was constructed at a cost of \$66. per acre, including the drainage system. Spread over a series of years, the average annual repayment charge is \$1.60 per acre. In addition, the annual operation and maintenance charge varies some, but for three years has been \$1.10 per acre. It must be remembered that the construction work was done when labor and materials were much less than today.

The principal crops are alfalfa, wheat, corn, barley, beans and sugar beets. Yields of alfalfa have commonly been three tons to the acre, but with favorable conditions have reached five to six tons. Yields of wheat have been 30 or more bushels: corn, 40 bushels; barley, 40 bushels; and sugar beets, 15 tons to the acre. Truck gardening pays well. Berries give good yields and hardy varieties of apples can be raised.

The returns per acre for 1949 crops of barley, corn, oats, wheat and speltz totaled \$686,950.40, or 26 per cent of the gross income; of which wheat with \$44.30 average gross per acre was the highest. Alfalfa, clover and flax seeds yielded \$18,561.35, or 7 per cent of the gross returns, with a flax average of \$33.92 per acre and alfalfa \$30.76 being outstanding. Forage crops, consisting of alfalfa, hay, corn fodder, and silage, sugar beet tops and pasture yielded 14 per cent of the gross returns of \$319.820.50, of which alfalfa hay was outstanding with \$29.48 per acre average returns. In commercial vegetables, beans, potatoes and garden truck yielded 5 per cent of the total returns, with potatoes leading in per acre returns averaging \$110.75, and beans \$51.21. Sugar beets yielded 37 per cent of the gross returns of \$983,272.51, averaging \$91.84 per acre. Other returns include returns from stock feeding operations and grossed \$266,619.73 or 10 per cent of the total of \$2,666,195.73, or an over-all average of \$54.33 per acre for the total irrigated acreage. Livestock feeding and finishing for market of 4,047 range cattle and 82,053 range sheep has grown to be one of the principal activities of the irrigated area, yielding 10 per cent of the total returns, or \$266,619.73.

This irrigated area of about an area of two townships is raising as much feed and feeding as much stock ready for market as the average whole dry-farmed county in that area. At first the settlers thought a section of land, more or less, was necessary to make a comfortable living with some accumulation, but the average farm on the project at the present time is approximately 100 acres, which experience has proved to be large enough to keep the average family busy and enable them to make a comfortable income.



### **IRRIGATION CROP RETURNS**

No recent report of crop returns under irrigation in North Dakota and adjacent areas is available. The Bureau of Reclamation reported average gross returns per acre as shown below, and that in almost every case the amount exceeded the cost of constructing the irrigation features of the project.

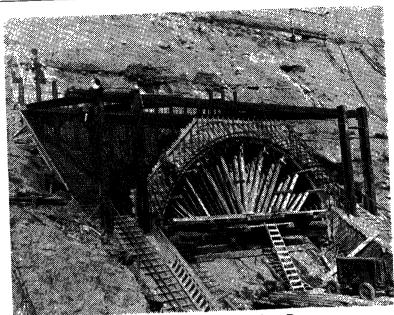
Potatoes averaged \$258.77 per acre, sugar beets \$134.62; beans \$63.80; and grains \$35.83. Alfalfa hay and other feeds, vegetables and gardens, fruits, pasture and miscellaneous crops returns were very satisfactory.

The five high-yielding projects, of which the Yellowstone is partly in North Dakota, showed average gross yields per acre as follows:

| Huntley Project, near Billings, Montana |       |
|-----------------------------------------|-------|
| Shoshone, Wyoming                       | 55.70 |
| Lower Yellowstone                       | 54.63 |
| Buffalo Rapids, near Glendive, Montana  | 48.67 |
| Milk River, near Chinook, Montana       | 48.55 |

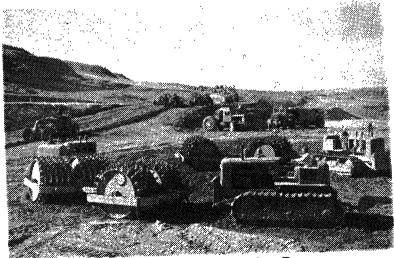
On the Lower Yellowstone irrigation project, about 20,000 acre of which are in McKenzie County, North Dakota, high average gross yields on individual crops were as follows:

| Potatoes    | \$109.86 |
|-------------|----------|
| Sugar beets | 94.46    |
| Gardens     | 65.67    |
| Flax        | 58.06    |
| Beans       | 55.38    |
| Wheat       | 54.37    |


### **IRRIGATION AIDS FRUIT RAISING**

The Lower Yellowstone Irrigation District is producing splendid crops of apples, crabapples, pears, cherries, plums, raspberries and strawberries. This indicates that with irrigation North Dakotans can produce most of the fruit juices needed for a balanced diet. A few small acreages in different communities are producing strawberries, raspberries and small fruits with sprinkler irrigation which for several years past have yielded more than a thousand dollars per acre.

The Great Plains Field Station at Mandan have been demonstrating for years that it is possible to raise some wonderful fruit, mostly grafted on hardy native roots.


### **COOPERATING AGENCIES**

State and national departments and agencies with which the work of the State Water Conservation Commission is coordinated have contributed generously to the work accomplished. On first glance it may appear to the reader that there is an over-lapping of effort but on further study it will be found that each department or agency has performed its particular part of the work which when coordinated with



Tunnel Outlet Structure, Garrison Dam

No. of Concession, Name



Sheep's-foot Packers at Garrison Dam

With a suitable mixture of excavated material mixed with water in right proportions, and ten or twelve passes of these sheep's-foot packers, heavily weighted, there is created an admixture impervious to moisture and almost equal to concrete, for the main enbankment. the others covers all the phases of the planning, surveying, mapping, specifications, weather and stream-flow records required for estimates, and details which make up the complete and detailed plans. This Commission is deeply indebted to the different cooperating agencies for their very fine cooperation.

# PROPOSED DAMS AND RESERVOIRS With Approximate Figures

| Name        | Stream           | Capacity<br>acre-feet | Height of<br>dam (ft.) |
|-------------|------------------|-----------------------|------------------------|
| Cannonball  | Cannonball river | 300,000               | 125                    |
| Thunderhawk | Cedar creek      | Not determined        |                        |
| Broncho     | Knife river      | Not determined        |                        |
| Crosby      | Souris Canal     | 332,000               | 30                     |
| Des Lacs    | Des Lacs river   | Not determined        | 30                     |
| Velva       | Souris river     | Diversion dam         |                        |
| Sheyenne    | Sheyenne river   | 560,000               | 95                     |
| Jamestown   | James river      | Not determined        | 92                     |

### PROPOSED IRRIGATED PROJECTS

| Name of Unit                       | Approx. acres  | General Location                                                     |
|------------------------------------|----------------|----------------------------------------------------------------------|
| Heart river                        | 13,100         | Extending 60 miles west of Mandan                                    |
| <b>Cannonball and Cedar rivers</b> | 12,000         | SW North Dakota—Solen to Elgin and<br>Thunderhawk dam on Cedar river |
| Knife river                        | 15,380         | Western N. Dak Beulah-Hazen-Stanton                                  |
| Little Missouri                    | Not determined | Preliminary Studies and Investigations                               |
| Hancock Flats                      | 5,400          | 30 miles NW of Washburn                                              |
| Fort Clark                         | 2,140          | 40 miles NW of Mandan                                                |
| Oliver-Sanger                      | 8,690          | 30 miles N of Mandan                                                 |
| Painted Woods                      | 4,300          | 30 miles N of Bismarck                                               |
| Manley                             | 1,200          | 15 miles N of Mandan                                                 |
| Wogansport                         | 1,750          | 12 miles N of Bismarck                                               |
| Square Butte                       | 2,040          | 8 miles N of Mandan                                                  |
| Burnt Creek                        | 1,310          | 5 miles N of Bismarck                                                |
| Bismarck                           | 8,500          | Adjoining Bismarck on south                                          |
| Horsehead Flats                    | 6,450          | 50 miles S of Bismarck                                               |
| Winona                             | 4,540          | 65 miles S of Bismarck                                               |
| Missouri-Souris                    | 1,000.000      | Crosby-Minot area                                                    |
| New Rockford                       | 55,500         | New Rockford area                                                    |
| Jamestown                          | 22,000         | Jamestown area                                                       |
| Oakes                              | 81,000         | On James river near Oakes                                            |
|                                    |                |                                                                      |

67

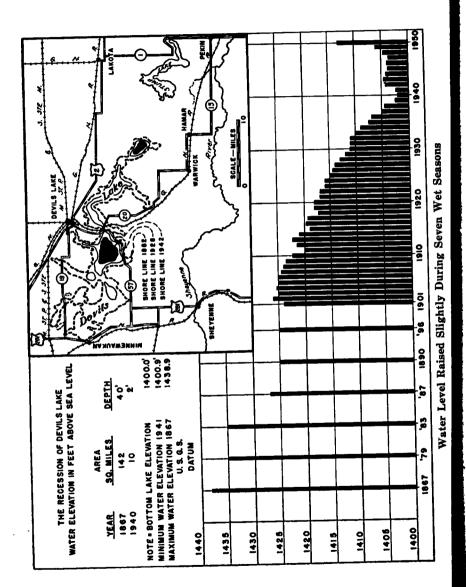
# POWER TRANSMISSION LINES Part Under Construction

| From            | То                  | Voltage |
|-----------------|---------------------|---------|
|                 | Garrison            | 115,000 |
| Williston       | Heart river subunit | 69,000  |
| Bismarck        | Garrison            | 115,000 |
| Minot           | Bismously           | 115,000 |
| Garrison        | Bismarck            | 69,000  |
| Washburn        | Turtle Lake         | 69,000  |
| Bismarck        |                     | 230,000 |
| Bismarck        | Jamestown           | 115,000 |
| Jamestown       | Fargo               | 69,000  |
| Buffalo         | Absaraka            | 230,000 |
| Bismarck        |                     | 115,000 |
| Williston       |                     | 115,000 |
| Minot           | Grand Forks         | •       |
| Devila Lako     | Carrington          | 115,000 |
| Commington      | Oakes               | 115,000 |
| Oakar           | Lisbon              | 69,000  |
| Dovila Lake     | Grand Forks         | 69,000  |
| Corrison        | Bismarck #1         | 230,000 |
| Tomostown       | Fargo               | 230,000 |
| Minot           | Des Lacs            | 115,000 |
| Crond Forks     | Fargo               | 110,000 |
| Minot           |                     | 115,000 |
| Woower          | Cando               | 69,000  |
| Den Lage        | Bowbells-Rugby      | 69,000  |
| Souris Tan Line | N. of Newburg       | 69,000  |
| Overly Ten Line |                     | 69,000  |
| Minot           | Carrington          | 69,000  |
| Onlyng          |                     | 69,000  |
| Daulah          | Heart River         | 69,000  |
| Deutan          | Richardton          | 69,000  |
| Wahadam         | Fergus Falls        | 69,000  |
| Wanpeton        | Fergus Falls        | 230,000 |
| rargo           | Bismarck #2         | 230,000 |
| Garrison        | Jamestown #2        | 230,000 |
| Bismarck        | Jamestown #4        |         |

(See 3-page map folded in "Power Resources")

# STATE OF NORTH DAKOTA

# CONGRESSIONAL APPROPRIATIONS JULY 1, 1949


| Garrison Dam<br>Baldhill Dam<br>Homme Dam<br>Mandan Flood Control | \$  | 27,500,000<br>210,000<br>475,000<br>36,000 |
|-------------------------------------------------------------------|-----|--------------------------------------------|
| Corps of Engineers projects                                       | \$  | 28,221,000                                 |
| For Construction:                                                 |     |                                            |
| Missouri Diversion Dam                                            | \$  | 200,000                                    |
| Fort Clark Irrigation                                             | Ψ   | 137,270                                    |
| Dickinson Project                                                 |     | 871,300                                    |
| Heart Butte Project                                               |     | 1,117,750                                  |
| Cannonball Project                                                | *   |                                            |
| Transmission Lines                                                |     | 2,452,500                                  |
| Preconstruction:                                                  |     | 2,492,900                                  |
|                                                                   |     |                                            |
| Crosby-Mohall                                                     | \$  |                                            |
| Devils Lake                                                       |     | 35,000                                     |
| Jamestown Project                                                 |     | 150,000                                    |
| Painted Woods                                                     |     | 60,000                                     |
| Cartwright Project                                                | *   | 21,891                                     |
| Sidney Unit in MontNo. Dak.                                       | *   | 31,156                                     |
| Investigations:                                                   |     |                                            |
| Missouri-Souris                                                   | \$  | 71,500                                     |
| North Dakota Pumping                                              | Ψ   | 9,500                                      |
| Garrison Diversion                                                |     | 44,500                                     |
| Little Missouri                                                   |     | 38,000                                     |
| Knife River                                                       |     | 38,000                                     |
| Cannonball                                                        |     | 38,000                                     |
| Power Studies                                                     |     | 27,500                                     |
| Contract Authority:                                               |     |                                            |
| Transmission Lines                                                | \$  | 2,000,000                                  |
| Missouri-Souris                                                   | Ψ   | 4,364,000                                  |
|                                                                   |     |                                            |
| Bureau of Reclamation Projects                                    | \$1 | 12,504,867                                 |
| *Fiscal year allocations                                          |     |                                            |

:

69

# STATE OF NORTH DAKOTA

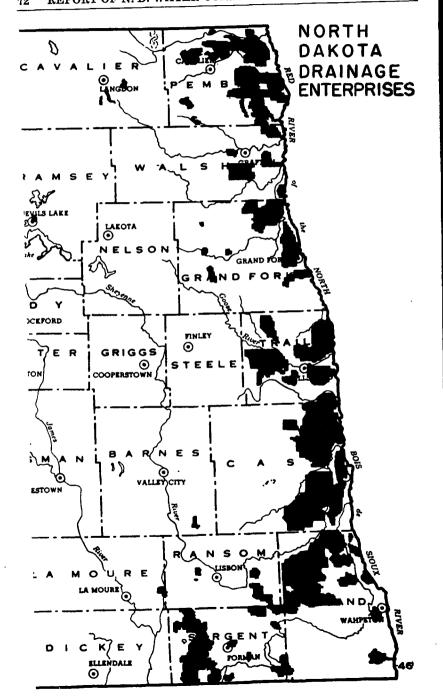
# 70 REPORT OF N. D. WATER CONSERVATION COMMISSION



# **RECORD RISE IN LEVEL OF DEVILS LAKE**

The level of Devils Lake has risen to an elevation of 1,413 feet above mean sea level, the highest elevation attained since 1927 according to information collected by the U. S. Geological Survey in cooperation with the North Dakota Water Conservation Commission.

Prior to the spring runoff this year, the Lake elevation was approximately 1,406 feet; hence a rise of about seven feet has occurred so far this year. This is by far the greatest change in elevation of the Lake surface recorded during any year since the records began in 1867, and the volume of water in the Lake has more than doubled since the thaw began this spring. The lowest elevation recorded was in 1940 when the level dropped to 1,401 feet, about 37 feet below the highest of record in 1867 when the water surface stood at an elevation of approximately 1,438 feet.


The flow in Mauvais Coulee, principal tributary to the Lake, has been higher this spring than previously known. The peak flow in this Coulee for the season was a little more than 600 cubic feet per second on June 7.

# NORTH DAKOTA RURAL REHABILITATION CORPORATION

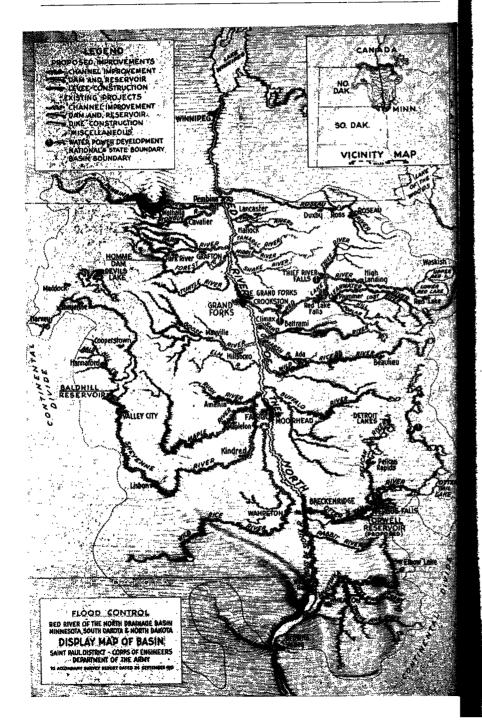
Since 1937, when the State Water Conservation Commission was organized, the North Dakota Rural Rehabilitation Corporation, has loaned the greater portion of funds used in the construction of the Lewis & Clark, the Sioux and the Grantier irrigation projects in McKenzie county, and in constructing and enlarging the intake for the Yellowstone Pumping Irrigation project.

### FLOOD DAMAGE IN NORTH DAKOTA

North Dakota is subject to seasonal flood damage on its different streams. This some years is quite severe, with a heavy money loss and occasionally some loss of life. But the area which is subject to flood crop losses almost every year is the Red River Valley. This loss varies but with occasional crop losses which are quite severe. The government statistician estimated that the losses to crops from floodwaters in 1942-3 in the Red River Valley amounted to twenty three million dollars. The areas inundated are shown on the "North Dakota Drainage Enterprises" map accompanying this report. Since this map was made, state appropriations have aided counties and local drainage districts in the construction and cleanout of drainage ditches which have aided in the rapid drain-off of floodwaters. These drains were constructed largely by the Soil Conservation Service engineering staff under the supervision of the State Water Conservation Commission and the local county or drainage district. After completion of the Corps of Engineers basin-wide plan is in operation, the flood difficulties of the Red River Valley should be largely overcome. It is estimated that it may take ten years to complete construction planned.



# DRAINAGE


Drainage activities in North Dakota went forward during the period October 1, 1948, to June 30, 1950, particularly in the counties of the Red River valley. Work is undertaken by the various counties with the U.S. Soil Conservation service supervising and assisting. The State Water **Conservation** Commission received an appropriation of \$150,000 from the state legislature for the 1949-1951 biennium to assist financially in this work. In addition to expenditures from this appropriation, payments totaling \$106,374.97 were authorized from the 1947-1949 drainage appropriations to pay for work under contract but incomplete at the close of the 1947-1949 biennium. This drainage construction and repair program includes excavation for the drain, either cleanout or new excavation, spoil bank leveling, obtaining easements, purchase of necessary material and supplies and incidental expenditures. Expenditures made are shown in the table that follows. The state expenditures were made from 1949-1951 appropriations for work contracted for since July 1, 1949, and from 1947-1949 appropriations for work under contract but incomplete on June 30, 1949. During the period covered by the report, approximately 2.000.000 cubic vards of earth were excavated for the drains and in addition installations of necessary bridges and culverts for farm crossings were made.

Under ruling formulated by the Commission, funds appropriated by the legislature for construction, reconstruction and cleanout of drains are available on a matching basis, the drainage districts to pay 60 per cent of the costs, the Commission to pay the balance of 40 per cent. A portion of these funds are also available to regular organized irrigation districts for repair and reconstruction of canals and protective works.

The following table shows the allocations of funds to counties by the State Water Conservation Commission for the 1949-1951 biennium:

| County               | Allocated    |
|----------------------|--------------|
| Cass                 | \$ 20,000.00 |
| Dickey               | 3,000.00     |
| Grand Forks          | 8,000.00     |
| Pembina              | 35,000.00    |
| Ransom               | 8,000.00     |
| Richland             | 8,000.00     |
| Sargent              | 4,000.00     |
| Traill               | 5,000.00     |
| Walsh                | 5,000.00     |
| Bottineau            | 14,000.00    |
| Balance, unallocated | 40,000.00    |
|                      |              |

Total Appropriation ...... \$150,000.00



# SUMMARY OF DRAINAGE EXPENDITURES OCTOBER 1, 1948 TO JUNE 30, 1950

| County                         | State<br>Share<br>of Cost | County<br>Share<br>of Cost | Total<br>Cost<br>of Drain |
|--------------------------------|---------------------------|----------------------------|---------------------------|
| Cass                           | \$ 30,940.84              | \$ 46,411.31               | \$ 77,352.15              |
| Grand Forks                    | 5,641.93                  | 8,462.89                   | 14,104.82                 |
| Pembina                        | 24,568.12                 | 36,852.17                  | 61,420.29                 |
| Richland                       | 4,008.76                  | 6,013.18                   | 10,021.94                 |
| Sargent                        | 688.22                    | 1,032.33                   | 1,720.55                  |
| Eaton Flood Irrigation Project | 420.00                    | 630.00                     | 1,050.00                  |
| Traill                         | 55,568.76                 | 83,357.30                  | 138,926.06                |
| Walsh-Pembina                  | 38,964.93                 | 65,356.41                  | 104,321.34                |
| Lewis & Clark Project          | 5,730.62                  | 843.24                     | 6,573.86                  |
| Sioux Irrigation District      |                           |                            | 1,934.80                  |
| Burlington Project             | 2,255.59                  | •••••                      | 2,255.59                  |

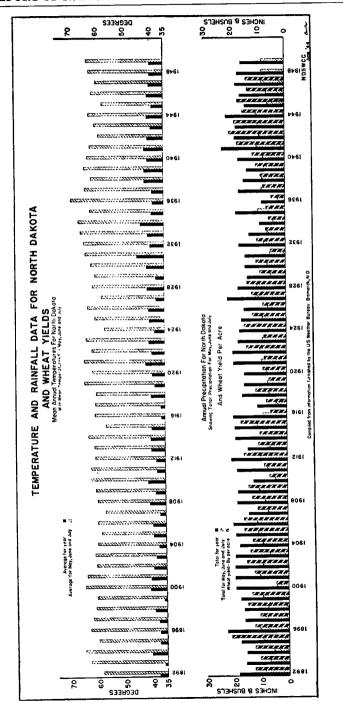
# \$170,722.57 \$248,958.83 \$419,681.40

# 1950 SNOW RUN-OFF EXCEEDED ALL RECORDS

Records of stream flow measurements for more than forty years were broken on many North Dakota streams by the 1950 snow run-off rush of water. This emphasized the need of keeping stream-flow records for many years so that engineers can have the extreme lows and highs of the stream on which they contemplate construction of dams and reservoirs to control floods, and provide irrigation water in periods of drouth. Some of the records broken by 1950 floods follow:

| Near        | Date                                                                                                      | Second<br>feet                                                                                                                                                                                                                                                                                                                                                                                                 | Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Second<br>feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Hazen       | Mar. 26-27, 1948                                                                                          | 11,400                                                                                                                                                                                                                                                                                                                                                                                                         | April 17, 1950                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 23,800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Richardton  | July 25, 1939                                                                                             | 14,000                                                                                                                                                                                                                                                                                                                                                                                                         | April 16, 1950                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>22,</b> 00 <b>0</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Lark        | March 25, 1947                                                                                            | 10,400                                                                                                                                                                                                                                                                                                                                                                                                         | April 17, 1950                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 29,200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Mandan      | March 27, 1943                                                                                            | 21,400                                                                                                                                                                                                                                                                                                                                                                                                         | April 19, 1950                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 30,400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Gladstone   | March 24, 1947                                                                                            | 2,200                                                                                                                                                                                                                                                                                                                                                                                                          | April 16, 1950                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5,500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Almont      | March 24, 1948                                                                                            | 2,250                                                                                                                                                                                                                                                                                                                                                                                                          | April 17, 1950                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20,200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Menoken     | April 7, 1948                                                                                             | 2,346                                                                                                                                                                                                                                                                                                                                                                                                          | April 18, 1950                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| lew Leipzig | March 26, 1943                                                                                            | 15,000                                                                                                                                                                                                                                                                                                                                                                                                         | April 17, 1950                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 51,800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Breien      | March 27, 1943                                                                                            | 21,900                                                                                                                                                                                                                                                                                                                                                                                                         | April 18, 1950                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 94,800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Haley       | March 31, 1913                                                                                            | 5,810                                                                                                                                                                                                                                                                                                                                                                                                          | April 15, 1950                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11,300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Jamestown   | April 23, 1948                                                                                            | 3,250                                                                                                                                                                                                                                                                                                                                                                                                          | April 17, 1950                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6,030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|             | Hazen<br>Richardton<br>Lark<br>Mandan<br>Gladstone<br>Almont<br>Menoken<br>Iew Leipzig<br>Breien<br>Haley | Hazen         Mar. 26-27, 1943           Richardton         July 25, 1939           Lark         March 25, 1947           Mandan         March 25, 1943           Gladstone         March 24, 1947           Ahmont         March 24, 1948           Wenoken         April 7, 1948           Iew Leipzig         March 26, 1943           Breien         March 27, 1943           Haley         March 31, 1913 | Near         Date         feet           Hazen         Mar. 26-27, 1948         11,400           Richardton         July 25, 1939         14,000           Lark         March 25, 1947         10,400           Mandan         March 25, 1947         10,400           Gladstone         March 24, 1943         21,400           Gladstone         March 24, 1948         2,200           Almont         March 24, 1948         2,250           Menoken         April 7, 1948         2,346           Iew Leipzig         March 26, 1943         15,000           Breien         March 27, 1943         21,900           Haley         March 31, 1913         5,810 | Near         Date         feet         Date           Hazen         Mar. 26-27, 1948         11,400         April 17, 1950           Richardton         July 25, 1939         14,000         April 16, 1950           Lark         March 25, 1947         10,400         April 17, 1950           Mandan         March 25, 1947         10,400         April 17, 1950           Mandan         March 24, 1943         21,400         April 19, 1950           Gladstone         March 24, 1947         2,200         April 16, 1950           Almont         March 24, 1948         2,250         April 17, 1950           Menoken         April 7, 1948         2,346         April 18, 1950           Iew Leipzig         March 26, 1943         15,000         April 17, 1950           Breien         March 27, 1943         21,900         April 18, 1950           Haley         March 31, 1913         5,810         April 15, 1950 |

# 1950 FLOOD RELIEF IN NORTH DAKOTA


More than \$150,000 was spent for relief of flood victims in North Dakota in 1950 by the American Red Cross, according to a report to Governor Aandahl.

Nineteen different counties out of the 53 in the state were damaged by the heavy spring run-off floodwaters, with 4,857 families suffering flood losses.

The largest losses were in Pembina county, where \$42,645 was spent on relief work. Stutsman county was second on flood damage, where \$18,766 was spent by the Red Cross on relief work. Grand Forks county had the third greatest flood loss with \$16,461 spent on flood relief.

# STATE OF NORTH DAKOTA

# 76 REPORT OF N. D. WATER CONSERVATION COMMISSION

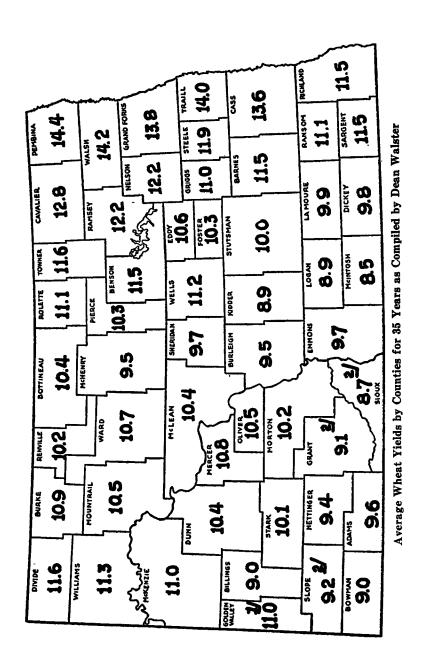


The report stated that the Red Cross helped repair 265 houses to make them livable, rebuilt 12 houses, repaired 34 barns, and rebuilt 32 other barns and outbuildings.

The report also stated that two deaths were attributed to the floods indirectly.

# FLOOD CONTROL PROJECTS

Mandan has suffered severe losses from floods of the Heart river, and the records show has been inundated 24 times since 1881, causing extensive damage to domestic, business, industrial, railroad and civic properties. Severe losses have been experienced through traffic delays on U. S. Highway No. 10, and on the Northern Pacific Railroad, both of which are transcontinental routes.


Damage to the city was prevented this year by the Heart Butte dam and levees constructed by the Corps of Engineers. The levees consisted of 287 lineal feet of concrete cantilever type flood wall; reinforcing approximately 5,500 lineal feet of railroad embankment used as a levee, placing rip-rap protection on 600 lineal feet of stream bank; raising two highway bridges and adding one 75-foot span, constructing one stop-log structure, and providing appurtenant drainage facilities to discharge sewage and storm flow during periods of floods. The cost was \$551,700 federal and \$93,100 local. Interior drainage works are to be completed by the Corps of Engineers in 1950.

# **RED RIVER OF THE NORTH FLOOD CONTROL**

The congressional Flood Control Act of 1948 authorized the Corps of Engineers to proceed with its flood control program on the Red River of the North. The program comprises channel improvements, levees and flood walls including 38.2 miles of channel improvement on the Sheyenne river; 26.9 miles on the Rush River; 32.4 miles on the Maple river; 13.9 miles on the Bois de Sioux river and at Wahpeton and Breckenridge; 21.9 miles on the Red river at Grand Forks and East Grand Forks, including levees and flood wall; 29 miles on the Red river near Fargo and Moorhead, including levees and flood wall, at a total cost of \$6,739,800. It is expected that these channel improvements will be completed in about five years, dependent on appropriation of sufficient funds. The estimated cost of the entire project in Minnesota and North Dakota is \$11,766,100 and includes some dams and reservoirs on Minnesota tributary rivers, to hold back flood waters.

# HOMME DAM AND RESERVOIR

The Homme dam is located near the northeast corner of North Dakota, on the south branch of Park River, about four miles upstream from the city of that name. Spring flooding has resulted in damage to agricultural lands as well as to the city of Grafton. During drought periods serious water shortages were experienced both for water supply



78

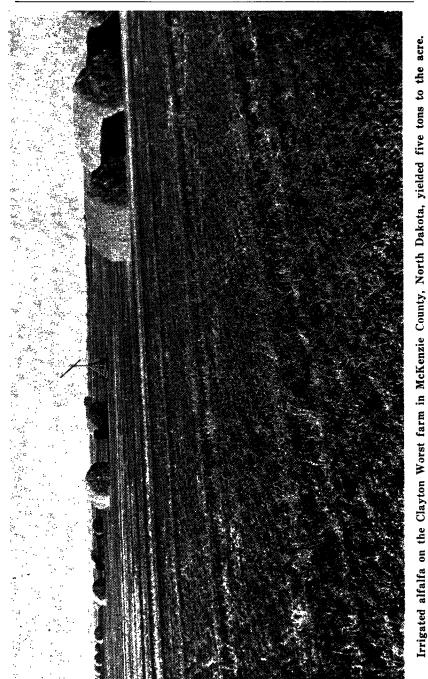
### STATE OF NORTH DAKOTA

and sewage dilution. The dam is designed to protect from spring overflows and to assure a dependable stream flow during drought periods. The dam is an earth-fill structure 865 feet long with a controlled concrete conduit 5 feet in diameter under the dam, and a concrete overflow spillway about 150 feet in length adjacent to the dam. The reservoir has a storage capacity of 3650 acre-feet. Engineers state it will be finished by the fall of 1950, for which funds have been appropriated. It will give partial protection against the maximum flood of record and will increase low flows in Park River for water supply and pollution abatement, at the cities of Park River and Grafton.

# **BALDHILL RESERVOIR FULL**

On September 25, 1949, engineers reported that earth rolling on the Baldhill dam would be finished in about a week, making the structure practically completed. No one dreamed that in the first spring run-off the capacity of this dam and reservoir would be taxed to the limit. In fact, stream run-off data indicated that it might take five years to fill the reservoir. On April 16, 1950, the engineers reported that the reservoir had been partially filled, and that because title to all the necessary land in the reservoir had not been taken, the pool was scheduled to be maintained at that level until 1951, but that because the rising waters threatened to flood sections of Valley City, the gates might be partially closed to hold down the flood level. But on May 30, 1950, it was reported that the unprecedented floodwaters were then pouring over the top of the 12 foot flood gates, and the dam was holding back a pool almost three feet above the expected normal operating level, making the depth of the water just back of the dam about 33 to 34 feet. This was two and a half times as much water as created serious flood damage in Valley City two years ago. Some estimate the flood loss saving to the city and other towns and cities down the Sheyenne Valley has fully warranted the expenditure which has created a reservoir about one-sixth of a mile wide and fills the river valley upstream for 42 miles. The runoff below the dam was held to the capacity of the river channel by control at the dam, thus preventing serious flood damage all down the valley.

Baldhill is an earth fill dam with concrete spillway and control works. It has a total length of 1650 feet with a concrete gravity ogee control works 140 feet in length, surmounted by three 40-feet Tainter gates, with two 3-foot diameter conduits in the piers for low water control.


This dam will provide substantial protection from the maximum flood stage so far recorded, in the area from the dam to the Red river flood plain, and to some extent reduce damage below this point.

# **1950 FLOOD IN RED RIVER VALLEY** CAUSED \$28,000.000 FARM DAMAGE

The Soil Conservation Survey have reported that the loss on crops, farm lands and buildings in the Red River Valley from the 1950 flood waters has been estimated by their engineers at twenty eight million dollars.

79





# FARGO PLANS SHEYENNE RIVER DIVERSION

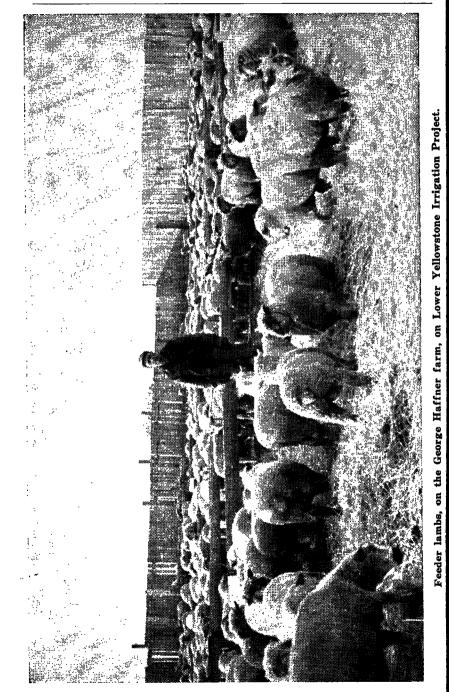
Fargo started planning for diversion of waters of the Sheyenne river in December, 1949, by requesting its city engineer to survey the area of the proposed diversion canal and Sheyenne river dam and gates and submit a report. The question of easements or right-of-way for the canal and for the abutments of the diversion dam was also discussed.

This is a part of the original plan for controlling the flood waters of the Sheyenne river by the Baldhill Dam at Valley City and diverting a part of the floodwaters when needed by the city of Fargo through a canal into the Red River when at low stages of flow so as to utilize it through the city water treatment plant. There have been times during drouth years when the city of Fargo had insufficient water for all its needs.

### MARMARTH FLOOD CONTROL

This project in southwestern North Dakota, on the Little Missouri river, was authorized by Congress. It consists of levees to protect the city of Marmarth from the Little Missouri and Little Beaver creek. Local cooperation was required, which has been approved by the Marmarth city authorities. In the mean time, costs have gone up and would now exceed the authorization given in 1936. A new report recommended an enlarged project. The original approval is therefore inactive pending action by Congress on the last report.

# **BEULAH FLOOD CONTROL**


Past floods from two coulees which drain through the town of Beulah have inundated the major portion of it and caused damage to utilities, business and city property as well as the Northern Pacific Railroad. The plan would enlarge existing drainage channels to drain into the Knife river. The project requires local cooperation which has not as yet been assured. The present authorization will expire otherwise on Dec. 9, 1952.

# HAZEN FLOOD CONTROL

A similar plan for flood relief for the city of Hazen is being held up awaiting the assurance of local cooperation as required by Congress. The present authorization will expire on March 30, 1953.

# **OTHER FLOOD DAMAGE INVESTIGATIONS**

Committees of Congress have asked the Corps of Engineers to make investigations and reports on flood control on the Red River of the North; on the Pembina river; on the Souris (Mouse) River; on the James river; on the Missouri river; on the Little Missouri river; on the Lower Heart river and on the Cannonball river, on all of which much flood damage was reported in the spring of 1950 due to the unusual snow run-off.

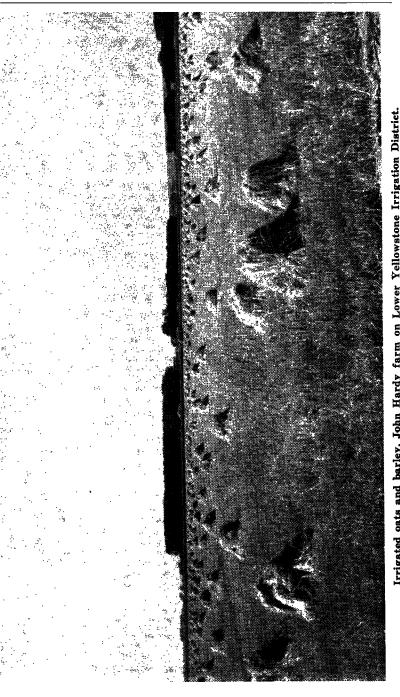


# STATE OF NORTH DAKOTA

# NORTH DAKOTA RECLAMATION ASSOCIATION

The North Dakota Reclamation Association of about 800 members scattered over North Dakota has had active representation in all the meetings of importance dealing with the water problems of North Dakota. It has directors in every county in the state. It has sent representatives to Washington, D.C., to appear before Congressional committees when Missouri river diversion and irrigation appropriations were under consideration.

It is active in conducting an educational campaign to bring to the citizens of the state a realization of the value and need in North Dakota and the Missouri Basin of irrigation, municipal water supplies, electric power, flood control, recreational facilities and preservation of fish, game and wild life. The association realizes the need of irrigation and raising of feeds within easy trucking distance of every farmer as a stabilizer in drouth seasons for agriculture and stockraising. It aids in the organization of irrigation districts.


It is a member of the National Reclamation Association of which its State Director, Harry E. Polk of Williston, is national president. It favors an expanding program of irrigation, reclamation and water conservation for this and other states of the Missouri river basin. C. S. Summers of Bowbells, N. D., is president for 1949-50, and J. I. Rovig, Mandan, N. D., has been secretary since its organization.

The North Dakota Reclamation Association by resolution urged the Bureau of Reclamation to submit to congress a plan for the construction of small irrigation projects; urged continued investigations to assure the orderly development of the Missouri-Souris division; urged speedy construction of the Jamestown dam; commended NDAC for its cooperation with federal agencies on soil surveys in proposed irrigated areas; reaffirmed opposition to federal regional authorities and pledged support of the Pick-Sloan plan; and asked appointment of association committees on publicity, education, finance and membership.

# LEGISLATURE AUTHORIZES CONSERVANCY DISTRICT

The 1949 North Dakota legislature, in order to facilitate the construction of the Missouri-Souris irrigation and water diversion project created a conservancy and reclamation district known as the "Missouri-Souris Conservancy and Reclamation District":

- 1. To provide for the future economic welfare and prosperity of the people of this state, and particularly of the people residing in the area embraced within the boundaries of such conservancy and reclamation district.
- 2. To provide for the irrigation of lands within the sections of such district periodically afflicted with drought, and to stabilize the production of crops on such lands.
- 3. To replenish and restore the depleted waters of lakes, rivers and streams in said district, and to stabilize the flow of said streams.



ellow

5

ardy

Ξ

E

barlev

and

2

# STATE OF NORTH DAKOTA

- 4. To replenish the waters of, and to restore the level of Devils lake.
- 5. To make available within the district, waters diverted from the Missouri river for irrigation, domestic, municipal and industrial needs, and for hydroelectrc power and other beneficial and public uses.

The district embraces the following fifteen counties: Divide. Burke. Williams, Renville, Ward, Bottineau, McHenry, Pierce, Benson, Ramsey, Eddy. Foster, Stutsman, LaMoure and Dickey. Other counties adjoining may become part of the district.

The district will have power to tax and enter into contracts with the government, and to take any steps found necessary in completing the construction and operation.

# MISSOURI-SOURIS PROJECTS ASSOCIATION

The Missouri Souris Project Association, with headquarters at Minot, and with A. R. Weinhandl as president and Oscar N. Berg as executive secretary, and other officials and membership in Montana along the line of the proposed development, is assisting in every way possible to promote and speed up the development of this immense million-acre irrigation project.

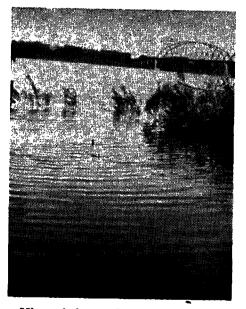
They are urging a longer term repayment contract to cover the cost of the construction for those benefiting by the irrigation works, urging Congress to make needed appropriations to speed up the progress of construction, helping in educational work and in the organization of the district as needed, and other activities needed in the progress of this great development.

# BURLINGTON IRRIGATION PROJECT

During the drouth years of the thirties, the United States acquired a tract of land near the town of Burlington, in Ward County, North Dakota, which was divided into small tracts on which small sets of buildings were constructed, and cultivated areas provided with irrigation water from reservoirs in the Des Lacs river. The tracts used were to rehabilitate small families made destitute by the drouth.

In 1947 these tracts were deeded to the State of North Dakota, including the reservoirs and lands adjacent, with the irrigation system. It was planned to use these tracts for the rehabilitation of returned soldiers of World War II who were released from the Veteran's Hospital at Minot.

Needed repairs on the dam and irrigation construction works was undertaken by engineers of the State Water Conservation Commission and placed in good operating condition in the spring of 1950. Some 30 to 35 families residing on these lands make use of these irrigated plots for gardens and feed lots.


# THEODORE ROOSEVELT NATIONAL MEMORIAL PARK

The Theodore Roosevelt National Memorial Park was established by act of congress, April 25, 1947. As extended by acts approved in June, 1948, it consists of 58,341 acres of federally owned land in three separate units—one near Medora, another near Watford City, and the Elkhorn ranch site about midway between the two along the Little Missouri river.

This park was dedicated to the citizens of these United States in memory of North Dakota's only citizen to become president, by the Honorable J. A. Krug, Secretæry of the Interior.

# **BISMARCK IRRIGATED GARDENS**

During the summer seasons of 1949 and 1950 the Bismarck irrigated gardens were operated under the direction of the North Dakota State Water Conservation Commission in cooperation with people of the Bismarck area. This project includes about 40 acres, located southwest of Bismarck along the Missouri river, and is divided into one-quarter acre plots, making about 150 individual gardens. Water for irrigating is pumped from the river. These gardens have proved to be successful and demonstrate the value and use of water for irrigation.



Missouri river at Bismarck, highway bridge in background.

# STATE OF NORTH DAKOTA

# ACTIVITIES OF THE DEPARTMENT OF THE INTERIOR

# U. S. Geological Survey

During fiscal year 1950, the Geological Survey continued to make good progress. Work on water resources investigations, geologic mapping and mineral resources investigations, river surveys, and topographic mapping programs were carried on close to schedule throughout the year.

The following is a brief summary of the year's accomplishments under each of the above divisions.

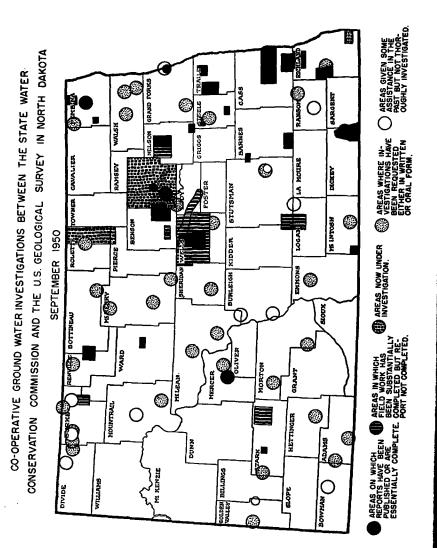
# Water Investigations (Surface Water)

During the fiscal year, new stream-gaging stations were constructed and put into operation in the departmental program of the Geological Survey.

The regular operational program was carried on throughout the year. This included gaging stations in cooperation with the states and other federal agencies. At these stations, the daily stage and discharge of the streams were determined and the records supplied to interested agencies.

The highest, or near highest, floods ever known occurred during April on certain tributaries to the Missouri river in North Dakota, and in the basin of the Red river of the North. Field surveys were made to determine by indirect methods the magnitude of these floods.

# Ground Water-North Dakota


General ground-water studies of the Missouri-Souris project area, in progress since late 1945, were continued through the year. A detailed study of the Bowbells block area was made during the 1949 field season. A general study of the Fort Berthold Indian reservation was begun in the summer of 1949 and is being continued.

Periodic water-level measurements were continued also in the Heart river, Knife river, New Rockford, Jamestown, and Oakes units.

# STREAM GAGING

During the spring run-off in 1950, the North Dakota State Water Conservation Commission cooperated with the U. S. Geological Survey, Surface Water Branch, in compiling data of stream flow throughout the state. This work was undertaken in addition to the regular cooperative work with this branch. Expenditures made in maintaining personnel and equipment for this work was matched in full by the U. S. Geological Survey under a supplemental agreement. Supplemental work performed included establishment of high water marks to determine flood flow measurements on the Cannonball, Grand, James and Red rivers. Information gathered will be incorporated with other recorded data to show the record-breaking flows and a more complete picture of the 1950

# STATE OF NORTH DAKOTA



destructive floods that caused such great damage to farms, cities, villages, public roads and other structures in these flooded areas.

# **Cooperation With States**

During the 1950 fiscal year, the following Missouri basin states maintained cooperatively financed ground-water studies with the Geological Survey: Kansas, Nebraska, Iowa, Colorado and North Dakota.

Studies continued during the fiscal year on the measurement, occurrence, and distribution of mineral constituents in surface waters. Chemical analyses were made of a large number of water samples.

# Geologic Mapping and Mineral Resource Investigations

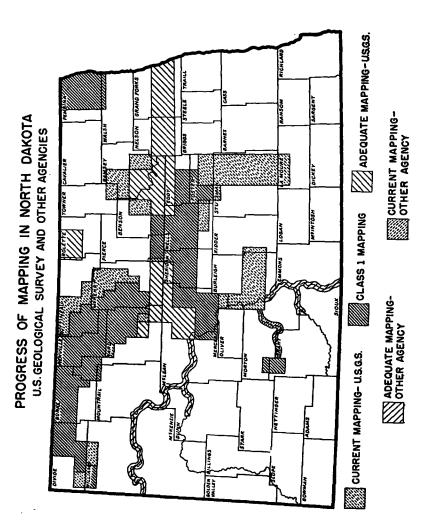
Missouri-Souris (North Dakota): Field work was completed and drafting of preliminary maps is nearing completion on 30 quadrangles (6,700 square miles) that cover all of the proposed Missouri-Souris irrigation plan. The maps also show the bedrock and glacial deposits, because these bear so directly on all plans and designs for irrigation structures.

Knife River Area: Field work was completed and geologic maps of six quadrangles (1,350 square miles) were compiled during the year. This area includes part of the Garrison dam and reservoir and also contains rich lignite reserves.

Reconnaissance of Williston Area: Field work was completed and a map compiled of a large area along the north side of the Missouri river. This project serves to the together the detailed mapping that is being done on other projects.

# **River Surveys**

During the year, 20 square miles of the Little Missouri river valley between Marmarth and Medora were mapped, completing the field work on this river. The maps show 393 miles of the river.


### INDIANS

Fort Berthold Reservation: The construction of Garrison dam will necessitate the removal of about 280 Indian families from the reservoir area. Approximately 420,000 acres have been surveyed for dry farming as well as range lands.

Standing Rock Reservation (North Dakota): Investigations on the Oahe unit were made by the Land section. A tentative taking line was established at the 1,620-foot level, the acreage below this contour was compiled.

# BUREAU OF LAND MANAGEMENT Cadastral Surveys

All land disposition, public domain management, and operational programs involving the public domain require accurate legal cadastral



surveys. Cadastral resurveys function to restore lost and obliterated section corner markings of the original public land surveys.

During the year, field work was completed on the following units: Lower Yellowstone, Coleharbor, Oahe and Missouri-Souris units, and a great deal of additional cadastral work was accomplished in North Dakota.

# **BUREAU OF MINES**

Mineral Investigations: Investigation of sodium sulfate-bearing lakes in northwestern North Dakota and eastern Montana was initiated in October, 1949. Fourteen lakes were sampled by auger drilling. Work is being done in cooperation with the North Dakota Geological Survey.

Solid Fuel Studies Adjacent to the Missouri River: During the year, the Bureau of Mines continued cooperative studies with the Corps of Engineers on the stockpiling of lignite taken from excavations at Garrison dam site.

Because of the increasing need for data on processing lignite that will be required in estimating the applicability of lignite to large scale industrial usage, Missouri basin projects were initiated at the Bureau of Mines laboratory at Grand Forks. The investigations pertain to phases of preparation and utilization of lignite and include drying, gasification, sulphur content studies, crushing and use in cyclone burners.

# NATIONAL PARK SERVICE

Some progress has been made on the agreement between the Bureau of Reclamation, Dickinson park board, and the National Park Service in which the Dickinson park board will assume administrative and maintenance responsibility for proposed recreational area at Dickinson reservoir.

> THE TOPOGRAPHIC BRANCH Department of the Interior United States Geological Survey

Topographic maps are the most accurate and give information in the most usable form to show each hill, valley and stream to scale and the heights and slope of the ground surface. This information is necessary before engineers can plan and design reservoirs, canals and irrigation projects.

The State Water Conservation Commission arranged for topographic mapping on a 50-50 cost basis with the U. S. Geological Survey to cover those portions of North Dakota where there was a prospect of constructing irrigation works. In addition, a large area of the state has been mapped for the Missouri river irrigation projects in cooperation with other government agencies.

# **Cooperative Program**

To the 1697 square miles mapped up to the last biennium, there has been added 613 miles, to make a total of 2310 square miles mapped and published.

In addition to the above 868 miles of coop mapping are under way with the Bismarck 7.5' and Wilton 15' sheets ready for publication. The Bismarck 15' N/2 and Mandan quadrangles have been field contoured and are being drafted.

The Bismarck 1 SW, Driscoll, McKenzie, and Menoken guadrangles have been stereo compiled and are ready for field contouring.

Following is a summary of accomplishments during the current biennium for the quadrangles in the cooperative mapping program:

# Published

Stanton **Turtle Creek** Washburn

Office Processing Completed, Composite Proofs Available Bismarck 7.5' Wilton

**Field** Contouring Completed

Bismarck 7.5' Bismarck 15' N/2 Mandan Wilton

# **Stereo Bases Completed**

Bismarck 1 SW Driscoll McKenzie Menoken ¾ Bismarck 15 N/2 Mandan

# Missouri River Basin

To the 2174 square miles mapped under the Missouri Basin Development Program during the past biennium, there have been added an additional 2,226 square miles, making a total of 4,400 square miles of such mapping for which published maps are available.

In addition 2,200 square miles have been mapped and office processed and are now ready for final publication.

1,750 square miles of planimetric bases are ready for field contouring.

1,250 square miles have had primary control operations completed.

Following is a summary of accomplishments during the current biennium of the quadrangles of the Missouri Basin program:

| Em: |
|-----|
| Fes |
| Fes |
| Fes |
| Gle |
| Gra |
| Gre |
| Gre |
| Ha  |
| Ha  |
| Ka  |
| Ke  |
| La  |
| La  |
| La  |
| La  |
| Ma  |
| M٤  |
| Ma  |
| Mi  |
| Mi  |
| M   |
| M   |
|     |
|     |

rick ssenden East ssenden West ssenden SW nburn ano ano NE ano SW anville anville NE anville NW anville SW eene enora anks rtland arlsruhe NW enmare unsford NE nsford NW insford SE ansford SW anfred anfred SW axbass inot inot NW ohall NE ohall SW

STATE OF NORTH DAKOTA Published

Mosquito Butte Mouse River Park NE Mouse River Park NW Mouse River Park SW Munster Newburg SW Niobe Noonan Noonan SW Norma Northgate Norwich Paulson Portal Rennie Lake Renville Riga Sawver Sherwood Simcoe Smoky Butte Stampede Surrey Tolley SE Vanville NE Velva Voltaire Westhope SW Zahl

# Office Processing Completed, Composite Proofs Available

Antler Antler NW. Bantry Brantford NE Brantford NW Brantford SW Brantford SE Bremen Burlington **Burlington NW Burlington SE** Carpio Carpio NE **Carrington** NE Carrington NW Carrington SE

Fessenden West Fessenden SE Fessenden SW Glenburn Grano Grano NE Grano SW. Granville Granville SW Greene Hartland Karlsruhe NE Karlsruhe NW Lansford Lansford NE Lansford SE

New Rockford NE New Rockford NW New Rockford SE New Rockford SW Norwich Noonan SE Oberon SE Oberon SW

**Omemee SW** 

Rival 2 SW

Sawyer NE

Roth NW

Roth SW

Russell

Sawver

Renville

Carrington SW Cathav SE Cathav Columbus SE Deep River Deering SE Deering SW Denbigh Denbigh NW Des Lacs Eckman Eckman SE Dokken SE Fessenden East

Lansford SW Manfred NE Manfred NW Manfred SE Manfred SW Maxbass Minot Minot NW Mohall NE Mohall SW Mosquito Butte Munster N N

Selz SE Sherwood Shevenne Lake NE Shevenne Lake NW Simcoe Surrey Tokio SW Towner NW Towner SW Vanville NE Velva Voltaire be SW

# Field

Antler Antler NW Bantry Brantford NE Brantford NW Brantford SE Brantford SW Bremen Carpio Carrington NE Carrington NW Carrington SE Carrington SW Cathay Cathay SE **Deep River** Deep River SE Denbigh Denbigh NW Des Lacs Devils Lake SW Eckman Eckman SE Fessenden East Fessenden West Fessenden SE

| Manster                 | Voltane          |
|-------------------------|------------------|
| Newburg SE              | Westhope SW      |
| Newburg SW              | Wolseth          |
| Field Contouring Comple | ted              |
| Fessenden SW            | Renville         |
| Flora SE                | Roth NW          |
| Glenburn                | Roth SW          |
| Grano                   | Rival 2 SW       |
| Jamestown 1 NW          | Russell          |
| Karlsruhe NE            | Sawyer SW        |
| Lansford SE             | Sawyer NE        |
| Manfred                 | Surrey           |
| Manfred NW              | Selz SE          |
| Manfred SE              | Selz SW          |
| Manfred SW              | Sheyenne Lake NE |
| Mosquito Butte          | Sheyenne Lake NW |
| Minot                   | Simcoe           |
| Minot NW                | Tokio SW         |
| Munster                 | Towner NW        |
| New Rockford NE         | Towner SW        |
| New Rockford NW         | Upham NW         |
| New Rockford SE         | Upham SE         |
| New Rockford SW         | Upham SW         |
| Newburg SW              | Velva            |
| Noonan SE               | Voltaire         |
| Norwich                 | Westhope NE      |
| Oberon NW               | Westhope NW      |
| Oberon SE               | Westhope SE      |
| Oberon SW               | Westhope SW      |
| Omemee SW               |                  |
| Multiplex Completed     |                  |

# N

| Antler    | Flora NE | Pekin SW     |
|-----------|----------|--------------|
| Antler NW | Flora NW | Pingree 2 NE |
| Aylmer SE | Flora SE | Pingree 2 SE |
| Aylmer SW | Flora SW | Pingree 3 NE |

# STATE OF NORTH DAKOTA

Bantry Bowdon NE Bowdon NW Brantford NE Brantford NW Brantford SE Brantford SW Brinsmade Carpio **Carrington NE** Carrington NW Carrington SE Carrington SW Crary SW Deep River Denbigh Denbigh NW **Devils** Lake NW Devils Lake SE Devils Lake SW

Grahams Island NE Grahams Island NW Grahams Island SE Grahams Island SW Hamar NE Hamar NW Karlsruhe NE Maddock NE Maddock NW Maddock SE Maddock SW Maza Newburg SE Newburg SW Oberon NE Oberon NW **Omemee SW** Pekin NE Pekin NW Pekin SE

Pingree 3 SE Pingree 4 NW Pingree 4 SW Renville Sawyer SW Selz NE Selz NŴ Sykeston NE Sykeston NW Roth NW Roth SW Russell Upham NW Upham SE Upham SW **Devils** Lake Stump Lake Special Towner NW Towner SW Westhope SW

Westhope SW

# **Primary Control Completed**

Antler Antler NW Bantry Crarv SW Deep River Denbigh NW Devils Lake NE Hamar NE Hamar NW

Roth SW Jamestown 1 NE Russell Jamestown 1 SE Newburg SE Tokio NE Tokio NW Omemee SW Tokio SE Pekin NE Towner NW Pekin NW Towner SW Pekin SE Pekin SW Roth NW

Plans for the North Dakota State Water Conservation Commission cooperative program for the immediate future call for the publication of the Bismarck. Mandan. and Bismarck 1 SW 71/2-minute quadrangles and the Wilton 15-minute quadrangle and the continuation of operations toward publication of the Bismarck, Menoken, Driscoll, and McKenzie 15-minute quadrangles. Control operations will be started on new quadrangles in order to keep the cooperative mapping hopper filled continuously.

Plans for the Missouri River Basin projects call for completion through publication of the quadrangles of the Missouri Souris Extension and the quadrangles of the Drake-Jamestown project. The area of the Drake-Jamestown project has been increased to take in the old beds of the Devils Lake and the Stump Lake.

The old lake beds are also being mapped for special large scale editions for the U.S. Fish and Wildlife Service.

# UNITED STATES DEPARTMENT OF THE INTERIOR Geological Survey WATER RESOURCES BRANCH

### Surface Water Division

Stream flow measurements are being conducted by the above U.S. department on a 50-50 cost distribution between the State of North Dakota and the government agency. This is done in order to obtain accurate records of the flow of streams in North Dakota. The work consists of obtaining daily and continuous river stages and actually measuring the amount of water that flows past a gaging station. From this data computations are made of the daily flow, peak stage, peak discharge, minimum stage and minimum discharge. Monthly and annual summaries are compiled for publication. During the past two years this agency has operated twenty-two such stream-gaging stations in this state. Forty-four additional stations are operated in cooperation with the U. S. Fish & Wildlife Service, Bureau of Reclamation, U. S. Departments of State, and Corps of Engineers. The complete records of stream flow thus obtained has been made available to the State Water Conservation Commission for its reports. Current records are available for immediate use by State Agencies.

These records are being used extensively by State and Federal agencies in the design, construction, operation and evaluation of projects and structures pertaining to flood control, wildlife propagation, control of stream pollution, highway and bridge design, recreation, and other water problems. The Missouri river development program and the Red river improvement program will divert, reroute, store and return water to many streams throughout the state. Accurate records of the flow are essential to the sound utilization of this water. The strength of stream flow data lies in long-time records which will show the extremes over a long period of time.

### MISSOURI RIVER NEAR WILLISTON, N. DAK.

Location.—Water-stage recorder, lat. 48°07', long. 103°44', in sec. 31, T. 154 N., R. 101 W., at Lewis and Clark Highway bridge, 7 miles west of Williston and 25 miles downstream from Yellowstone River. Datum of gage is 1,830.20 feet above mean sea level, datum of 1929.

Drainage area.-164.500 square miles.

Records available.-September 1928 to September 1948.

Average discharge.-20 years, 19,180 second-feet.

Extremes.—Maximum discharge during year, 78,300 second-feet June 10; maximum gage-height, 12.00 feet Mar. 26 (affected by icc); minimum daily discharge, 7,800 second-feet Feb. 13.

1926-48: Maximum discharge, 231,000 second-feet Apr. 4, 1930, from rating curve extended above 80,000 second-feet; maximum gage height, 19.78 feet Mar. 28, 1943 (ice jam); minimum daily discharge, 1,320 second-feet Dec. 28, 1939.

Remarks.—Records good except those for period of ice effect, which are fair. Many diversions above station for irrigation. Flow partly regulated by Fort Peck Reservoir.

| Month              | Second<br>Foot Days | Maximum | Minimum | Mean   | Run-off in<br>Acre-Feet |
|--------------------|---------------------|---------|---------|--------|-------------------------|
|                    |                     | 1       |         |        | 1                       |
| October            | 682.300             | 30.200  | 17.500  | 22.010 | 1,353,000               |
| November           | 297.800             | 15,800  | 4.000   | 9.927  | 590,700                 |
| December           | 259,000             | 10.100  | 6.100   | 8,355  | 513,700                 |
|                    | 272.800             | 12.600  | 6.900   | 8.800  | 541.100                 |
| January            | 286,500             | 17.000  | 7.200   | 10.230 | 568.300                 |
| February           | 769,700             | 180.000 | 6.800   | 24.830 | 1.527.000               |
| March              |                     | 38.600  | 23.500  | 31,160 | 1.854.000               |
| April              | 934,700             |         | 31.100  | 43.570 | 2.679.000               |
| Мау                | 1,350,600           | 64,600  |         | 53.970 | 3.211.000               |
| June               | 1,619,100           | 74,200  | 37,900  |        |                         |
| fuly               | 1,371,400           | 62,800  | 33,700  | 44,240 | 2,720,000               |
| August             | 1,057,100           | 44,000  | 25,000  | 34,100 | 2,097,000               |
| September          | 950,600             | 34,500  | 26,600  | 31,690 | 1,885,000               |
|                    |                     | 1       | 1       | 1      |                         |
| Water Year 1946-47 | 9.851.600           | 180.000 | 4,000   | 26,990 | 19,540,000              |

| Month              | Second<br>Foot Days | Maximum | Minimum | Mean   | Run-off in<br>Acre-Feet |
|--------------------|---------------------|---------|---------|--------|-------------------------|
|                    |                     |         |         |        | 1                       |
| October            | 1.047.600           | 35,000  | 32,600  | 33,790 | 2,078,000               |
| November           | 638,200             | 33.600  | 16.200  | 21,270 | 1,266,000               |
| December           | 436.000             | 18.400  | 11.000  | 14,060 | 864,800                 |
|                    | 320,600             | 12.000  | 8,500   | 10.340 | 635,900                 |
|                    | 304.400             | 17.000  | 7.800   | 10.500 | 603,800                 |
|                    | 537.100             | 28.000  | 9,900   | 17.330 | 1.065.000               |
| March              | 697.100             | 35.000  | 17.000  | 23.240 | 1.383.000               |
| April              |                     |         | 22.900  | 31.750 | 1.953.000               |
| Мау                | 984,400             | 57,600  |         |        |                         |
| June               | 1,979,200           | 77,200  | 55,300  | 65,970 | 3,926,000               |
| July               | 1,524,000           | 60,400  | 35,600  | 49,160 | 3,023,000               |
| August             | 1,039,200           | 40,000  | 28,500  | 33,520 | 2,061,000               |
| September          | 933,100             | 37,200  | 27,700  | 31,100 | 1,851,000               |
|                    |                     | 1       |         |        | 1                       |
| Water Year 1947-48 | 10,440,900          | 77,200  | 7,800   | 28,530 | 20,710,000              |

97

# MISSOURI RIVER MAIN STEM Missouri River near Elbowoods, N. Dak.

Location.—Wire-weight gage, lat. 47°34', long. 102'12', in NE¼ NE¼ sec. 12, T. 147 N., R. 91 W., at bridge on State Highway 8, 2 miles downstream from Little Missouri River and 2½ miles west of Elbowoods. Datum of gage is 1,720.55 fect above mean sca level, datum of 1929.

Drainage area.-179,800 square miles.

Records available.-October 1939 to September 1948.

Extremes.—Maximum daily discharge during year, 76,500 second-feet June 10; maximum gage height observed, 15.14 feet Mar. 25 (affected by ice); minimum daily discharge, 7,800 second-feet Feb. 10; minimum gage height observed, 5.39 feet Nov. 14.

1938-48: Maximum discharge, about 260,000 second-feet Mar. 26, 1947, from rating curve extended above 110,000 second-feet by logarithmic plotting (gage-height, 23.2 feet); minimum discharge, about 1,500 second-feet Dec. 30, 1939; minimum gage height, 2.00 feet Sept. 18, 1940.

Remarks.—Records good except those for period of ice effect, which are fair. Flow partly regulated by Fort Peck Reservoir.

| Month              | Second<br>Foot Days | Maximum | Minimum | Mean   | Run-off in<br>Acre-Feet |
|--------------------|---------------------|---------|---------|--------|-------------------------|
|                    |                     |         | 10.000  | 00 710 | 1 458 000               |
| October            | 735,000             | 30,800  | 19,300  | 23,710 | 1,458,000               |
| November           | 314,000             | 20,200  | 3,400   | 10,470 | 622,800                 |
| December           | 252.700             | 10.800  | 5,300   | 8.152  | 501,200                 |
| January            | 275.450             | 10.600  | 7.250   | 8.885  | 546.300                 |
| February           | 320,300             | 17.800  | 7.100   | 11.440 | 635.300                 |
| March              | 890,600             | 210.000 | 7.800   | 28.730 | 1.766.000               |
| April              | 1.089,600           | 49.500  | 24,900  | 36.320 | 2,161,000               |
| May                | 1.320.500           | 59.600  | 32,300  | 42.600 | 1 2.619.000             |
| June               | 1,714,600           | 90,400  | 37.500  | 57.150 | 3.401.000               |
| July               | 1.481.100           | 69.900  | 36,500  | 47.780 | 2.938.000               |
| August             | 1,099,800           | 44.000  | 26,600  | 35.480 | 2,181,000               |
| September          | 965,300             | 35,600  | 22,800  | 32,180 | 1,915,000               |
|                    |                     |         |         |        | 1                       |
| Water Year 1946-47 | 10,458,950          | 210,000 | 3,400   | 28,660 | 20,740,000              |

| Month              | Second<br>Foot Days | Maximum | Minimum | Mean   | Run-off in<br>Acre-Feet |
|--------------------|---------------------|---------|---------|--------|-------------------------|
| October            | 1.052.800           | 35.300  | 32.300  | 33,960 | 2,088,000               |
| November           | 634.400             | 33.700  | 13.000  | 21.150 | 1.258.000               |
| December           | 407.300             | 16.500  | 9.500   | 13.140 | 807.900                 |
| January            | 322.400             | 14.000  | 8,700   | 10,400 | 639,500                 |
| February           | 277.000             | 14.200  | 7.800   | 9.552  | 549,400                 |
| March              | 632,300             | 34.500  | 10.400  | 20,400 | 1.254.000               |
| April              | 855,100             | 62.800  | 18.000  | 28.500 | 1.696.000               |
| May                | 983,800             | 57.100  | 23.100  | 31.740 | 1.951.000               |
| June               | 1.990,100           | 76.500  | 54.100  | 66.340 | 3.947.000               |
| July               | 1.578.400           | 63.000  | 35.700  | 50.920 | 3.131.000               |
| August             | 1.064.200           | 40.100  | 29,100  | 34.330 | 2.111.000               |
| September          | 926,300             | 37,400  | 27,900  | 30,880 | 1,837,000               |
|                    |                     | 1       |         |        | 1                       |
| Water Year 1947-48 | 10,724,100          | 76,500  | 7,800   | 29,300 | 21,270,000              |

### MISSOURI RIVER BASIN Missouri River Below Garrison Dam

Location.—Wire-weight gage, lat. 47°30', long. 101°24', in sec. 5, T. 146 N., R. 84 W., on construction bridge at Garrison dam site, 12 miles north of Stanton. Datum of gage is sea level (levels by Corps of Engineers).

Drainage area.-181,400 square miles.

Records available.—January to March 1948 (gage heights only), April to September 1948.

Extremes.—Maximum discharge during period, 75,700 second-feet June 11; maximum elevation 1890.70 Mar. 30 (affected by ice); minimum discharge, not determined. Remarks.—Records good.

| Month              | Second<br>Foot Days | Maximum | Minimum | Mean   | Run-off in<br>Acre-Feet |
|--------------------|---------------------|---------|---------|--------|-------------------------|
| October            |                     |         |         |        |                         |
| November           |                     |         |         |        |                         |
| December           |                     |         |         |        |                         |
| January            |                     |         |         |        |                         |
| February           |                     |         |         |        |                         |
| March              |                     |         |         |        |                         |
|                    |                     |         |         |        |                         |
| April              |                     |         |         |        | 1                       |
| May                | 978,500             | 55,500  | 23,500  | 31,560 | 1,941,000               |
| June               | 1,980,700           | 75,000  | 53,100  | 66,020 | 1 3.929.000             |
| July               | 1,585,500           | 64.000  | 35.800  | 51.150 | 3.145.000               |
| August             | 1.068.400           | 40,400  | 28,400  | 34.460 | 2.119.000               |
| September          | 928,600             | 38,900  | 28,100  | 30,950 | 1,842,000               |
|                    |                     | ] ]     |         |        | 1                       |
| Water Year 1947-48 |                     |         |         |        | 12.980.000              |

#### MISSOURI RIVER MAIN STEM Missouri River at Bismarck, N. Dak.

Location.—Water-stage recorder, lat. 46°48'50", long. 100°49'10", in sec. 31, T. 139 N., R. 80 W., at Bismarck city water plant, 2,100 feet downstream from Northern Pacific Railway bridge, 1 mile west of Bismarck, and about 4 miles upstream from Heart River. Datum of gage is 1,618.38 feet above mean sea level, datum of 1929.

Drainage area.-186,400 square miles.

Records available.--September 1904 to December 1905, October 1927 to September 1948.

Average discharge.---20 years (1928-48), 20,320 second-feet.

Extremes.—Maximum discharge during year, 76,400 second-feet June 12; maximum gage height, 15.84 feet Apr. 1 (affected by ice); minimum daily discharge, 7,900 second-fect Feb. 13; minimum gage height, 5.64 feet Nov. 14.

1904-05, 1927-48: Maximum discharge, 282,000 second-feet Apr. 3, 1943; maximum gage height, 22.2 feet Apr. 1, 1943, from floodmarks; minimum discharge, about 1,800 second-feet Jan. 3, 1940; minimum gage height, 1.35 feet, present site and datum, Sept. 4, 1934.

Maximum stage known, 31.6 feet, present site and datum, Mar. 31, 1881 (ice jam). Remarks.—Records good except those for period of ice effect, which are fair Flow partly regulated by Fort Peck Reservoir.

| Month              | Second<br>Foot Days | Maximum | Minimum | Mean   | Run-off in<br>Acre-Feet |
|--------------------|---------------------|---------|---------|--------|-------------------------|
|                    | 752,700             | 38,900  | 19.900  | 24,280 | 1,493,000               |
| October            |                     |         |         | 11.170 | 664.700                 |
| November           | 335,100             | 20,400  | 2,800   |        |                         |
| December           | 246,900             | 11,400  | 4,600   | 7,965  | 489,700                 |
| January            | 282.600             | 10.700  | 7.400   | 9.116  | 1 560.500               |
| February           | 316.300             | 18.000  | 7.800   | 11.300 | 627.400                 |
| March              | 891.400             | 241.000 | 8.800   | 28.750 | 1,768,000               |
| April              | 1.180.500           | 52,300  | 29.500  | 39.350 | 2.341.000               |
| May                | 1.300.800           | 61.000  | 31.200  | 41.960 | 2,580,000               |
| June               | 1.738.700           | 104.000 | 35,100  | 57.960 | 3,449,000               |
| July               | 1.467.300           | 66.800  | 36,300  | 47.330 | 2,910,000               |
| August             | 1,125,400           | 44.000  | 30,600  | 36,300 | 2,232,000               |
| September          | 953,200             | 34,500  | 26,900  | 31,770 | 1,891,000               |
|                    |                     | 1       |         |        |                         |
| Water Year 1946-47 | 10,590,900          | 241,000 | 2,800   | 29,020 | 21,010,000              |

| Month              | Second<br>Foot Days | Maximum | Minimum | Mean   | Run-off in<br>Acre-Feet |
|--------------------|---------------------|---------|---------|--------|-------------------------|
|                    |                     |         |         |        |                         |
| October            | 1,052,000           | 33,300  | 32,400  | 33,940 | 2,087,000               |
| November           | 630.300             | 34,900  | 11,000  | 21,010 | 1,250,000               |
| December           | 398,900             | 17.000  | 9,000   | 12,870 | 791.200                 |
| January            | 329,200             | 13.400  | 8,800   | 10.620 | 653,000                 |
| February           | 266.400             | 12,500  | 7,900   | 9.186  | 528,400                 |
| March              | 641.400             | 40.000  | 13.100  | 20.690 | 1.272.000               |
| April              | 1.029.500           | 60.500  | 26.600  | 34.320 | 2.042.000               |
| May                | 976.400             | 56.800  | 23,200  | 31.500 | 1.937.000               |
| June               | 1.983.300           | 75.600  | 51.700  | 66.110 | 3.934.000               |
| July               | 1.602.800           | 67.400  | 36.500  | 51.700 | 3,179,000               |
| August             | 1.071.000           | 40.000  | 28,600  | 34,550 | 2,124,000               |
| September          | 916,900             | 37,700  | 28,400  | 30,560 | 1,819,000               |
|                    |                     | 1       |         |        |                         |
| Water Year 1947-48 | 10,898,100          | 75,600  | 7,900   | 29,780 | 21,620,000              |

### LITTLE MUDDY CREEK BASIN Little Muddy Creek near Williston, N. Dak.

Location.—Staff gage, lat.  $48^{\circ}11'40''$ , long.  $103^{\circ}35'50''$ , on line between sec. 31, T. 155 N., R. 100 W. and sec. 6, T. 154 N., R. 100 W., at highway bridge, 4 miles northeast of Williston and 6 miles upstream from mouth.

Drainage Area.-1,010 square miles.

**Records available.**—June 1932 to July 1933, April 1946 to September 1949. February 1904 to April 1909 (no winter records) at site just above Camp Creek, 2½ miles upstream.

Extremes.—Maximum discharge during year, 1,300 second-feet Mar. 28, Apr. 3: maximum gage height, 12.0 feet Mar. 28 (floodmark), affected by ice; minimum, 0.5 second-foot Jan. 26 to Feb. 21.

1904-09, 1932-33, 1946-49: Maximum discharge, 4,340 second-feet (estimated) Apr. 11, 1904 (gage height, 10.3 feet, site and datum then in use); minimum, 0.1 second-foot Feb. 1-20, 1933.

Remarks.—Records fair except those for period of ice effect, which are poor. Gage read once daily.

| Month              | Second<br>Foot Days | Maximum | Minimum     | Mean      | Run-off in<br>Acre-Feet |
|--------------------|---------------------|---------|-------------|-----------|-------------------------|
| October            | 400                 | 21      | 9           | 12.9      | 793                     |
| November           | 240                 | 10      | 4           | 8.0       | 476                     |
|                    | 179                 | 10      | 3           | 5.8       | 355                     |
| December           |                     |         | 3<br>4      |           |                         |
| January            | 156                 | 7       | 4           | 5.0       | 309                     |
| February           | 274                 | 50      | 2           | 9.8       | 543                     |
| March              | 8,754               | 2,200   | 1           | 282       | 17,360                  |
| April              | 4,848               | 953     | 31          | 162       | 9,620                   |
| Мау                | 711                 | 30      | 18          | 22.9      | 1,410                   |
| June]              | 1,122               | 82      | 17          | 37.4      | 2,230                   |
| July               | 361                 | 30      | 7           | 11.6      | 716                     |
| August             | 320                 | 41      | 7           | 10.3      | 635                     |
| September          | 233                 | 8       | 7           | 7.8 1     | 462                     |
| Water Year 1946-47 | 17,598              | 2,200   | 1           | 48.2      | 34,910                  |
|                    | Second              | <u></u> | ·····       |           | Run-off in              |
| Month              | Foot Days           | Maximum | Minimum     | Mean      | Acre-Feet               |
| October            | 251                 | 9       | 8           | 8.1       | 498                     |
| November           | 282                 | 11      |             | 9.4       | 559                     |
| December           | 286                 | 11      |             | 9.2       | 567                     |
| January            | 192                 | 18      | 8<br>8<br>4 | 6.2       | 381                     |
|                    | 55                  | 3       | i           | 1.9       | 109                     |
| February           | 7,092               |         | 3           | 229       | 14.070                  |
| March              |                     | 1,700   |             |           |                         |
| April              | 4,812               | 318     | 60          | 160       | 9,540                   |
| Мау                | 1,079               | 81      | 16          | 34.8      | 2,140                   |
| June               | 606                 |         | 10          | 20.2      | 1,200                   |
| July               | 541                 | 106     | 9           | 17.5      | 1,070                   |
| August             | 271                 | 12      | 7           | 8.7       | 538                     |
| September          | 204                 | 8       | 6           | 6.8       | 405                     |
| Water Year 1947-48 | 15,671              | 1,700   | 1           | 42.8      | 31,077                  |
|                    | Second              | í -     | <u> </u>    | · · · · · | Run-off in              |
| Month              | Foot Days           | Maximum | Minimum     | Mean      | Acre-Feet               |
| October            | 290.8               | 10      | 8.8         | 9.38      | 577                     |
| November           | 283.1               | l īĭ    | 9.1         | 9.44      | 562                     |
| December           | 185.9               | 9.1     | 4.6         | 6.00      | 369                     |
| January            |                     | 4       | .5          | 2.35      | 145                     |
| February           | 15.3                | .7      | .5          | .55       | 30                      |
| March              | 4.131.7             | 1,100   | .8          | 133       | 8.200                   |
| April              | 6,707               | 1.200   | 24          | 224       | 13,300                  |
|                    | 580                 | 32      | 15          | 18.7      | 1.150                   |
| June               | 464                 | 26      |             | 15.5      | 920                     |
| Jule<br>July       | 286.7               | 15      | 5.5         | 9.25      | 569                     |
|                    |                     | 7.3     |             | 9.25      |                         |
| August             | 154.0               |         | 3.9         |           | 305                     |
| September          | 161.5               | 6.1     | 4.3         | 5.38      | 320                     |
|                    |                     | 1       | 1           |           |                         |

### LITTLE MISSOURI RIVER BASIN Little Missouri River near Watford City, N. Dak.

Location.--Water-stage recorder and wire-weight gage, lat. 47°36', long. 103°16', in NW<sup>1</sup>/<sub>2</sub> sec. 35, T. 148 N., R. 99 W., at highway bridge, 17<sup>1</sup>/<sub>2</sub> miles south of Watford City and 18 miles upstream from Cherry Creek. Datum of gage is 1,929.03 feet above mean sea level, datum of 1929.

Drainage area.-8,490 square miles.

Records available .--- October 1934 to September 1949.

Average discharge.---15 years, 642 second-feet.

Extremes.—Maximum discharge during year, 26,000 second-feet Mar. 28; (gage height, 13.7 feet, backwater from ice); minimum, 1 second-foot Jan. 26 to Mar. 3.

1934-49: Maximum discharge, 110,000 second-fect Mar. 25, 1947 (gage height 24.0 fect, floodmark); no flow at times.

Remarks.—Records fair except those for periods of ice effect, which are poor. Some diversions above station for irrigation. Wire-weight gage read once daily or oftener.

Revisions (water years) .--- W 926:1935.

| Month              | Second<br>Foot Days | Maximum | <br>  Minimum | Mean  | Run-off in<br>Acre-Feet |
|--------------------|---------------------|---------|---------------|-------|-------------------------|
|                    | 05 400              | 2.410   | 79            | 820   | 50.440                  |
| October            | 25,428              |         |               |       | 24.360                  |
| November           | 12,284              | 1,500   | 40            | 409   |                         |
| December           | 4,270               | 350     | 30            | 138   | 8,470                   |
| January            | 2.105               | 400     | 20            | 68    | 4,180                   |
| February           | 39,151              | 6.000   | 6             | 1,398 | 77,650                  |
| March              | 186,500             | 55,000  | 150           | 6,016 | 369,900                 |
| April              | 117,473             | 9.670   | 490           | 3,916 | 233,000                 |
| May                | 9.229               | 452     | 210           | 298   | 18,300                  |
| June               | 80.134              | 9.300   | 201           | 2,671 | 158,900                 |
| July               | 38,622              | 6,100   | 330           | 1.246 | 76,610                  |
| August             | 19.615              | 2,900   | 89            | 633   | 38,910                  |
| September          | 1,626               | 82      | 39            | 54    | 3,230                   |
| Water Year 1946-47 | 536,437             | 55,000  | 6             | 1,470 | 1,064,000               |

| Month              | Second<br>Foot Days | Maximum | Minimum | Mean    | Run-off in<br>Acre-Feet |
|--------------------|---------------------|---------|---------|---------|-------------------------|
|                    |                     |         |         | l       |                         |
| October            | 1.277               | 63      | 31      | 41.2    | 2,530                   |
| November           | 764                 | i 44    | i 18 i  | 25.5    | 1,520                   |
| December           | 438                 | 30      | 7       | 14.1    | 869                     |
| January            | 67                  | 6       | 1 1     | 2.2     | 133                     |
| February           | 7.465               | 2,500   | i õ i   | 257     | 14.810                  |
| March              | 96.310              | 10.300  | 50 (    | 3.107 Í | 191.000                 |
| April              | 34.378              | 2.590   | 373     | 1,146   | 68.190                  |
| May                | 13,955              | 1.130   | 158     | 450     | 27.680                  |
| - · ·              | 30.705              | 2.960   | 199     | 1.024   | 60,900                  |
| 7.1                | 33,565              | 2,550   | 309     | 1.083   | 66.580                  |
|                    | 12.001              | 2.010   | 82      | 387     | 23,800                  |
| August             | 1.096               | 74      | 18      | 36.5    | 2,170                   |
| September          | 1,090               | 1 /4    | 10      | 00.0    | 2,110                   |
| Water Year 1947-48 | 232.021             | 10.300  | 0       | 634     | 460,200                 |

| Month              | Second<br>Foot Days | Maximum | Minimum | Mean  | Run-off in<br>Acre-Feet |
|--------------------|---------------------|---------|---------|-------|-------------------------|
| October            | 616                 | 24      | 16      | 19.9  | 1,220                   |
| November           | 1.933               | 116     | 27      | 64.4  | 3,830                   |
| December           | 366                 | 60      | 3       | 11.8  | 726                     |
| January            | 63                  | 3       | 1       | 2.0   | 125                     |
| February           | 28                  | 1 1     | 1 1     | 1.0   | 56                      |
| March              | 177,715             | 24.000  | 1 1     | 5,733 | 352,500                 |
| April              | 112,485             | 14.700  | 488 (   | 3,750 | 223,100                 |
| May                | 9,257               | 465     | 181     | 299   | 18,360                  |
| June               | 3,815               | 248     | 65      | 127   | 7,570                   |
| July               | 2,572               | 154     | 49      | 83.0  | 5,100                   |
| August             | 1.439               | 112     | 1.8     | 46.4  | 2,850                   |
| September          | 527                 | 39      | 10      | 17.6  | 1,050                   |
| Water Year 1948-49 | 310,816             | 24,000  | 1       | 852   | 616,500                 |

# KNIFE RIVER BASIN

### Knife River at Hazen, N. Dak.

Location.—Water-stage recorder and wire weight gage, lat. 47°17', long. 101°37', in NE14 Sec. 19, T. 144 N., R. 86 W., at county highway bridge, 0.5 mile south of Hazen and 2 miles upstream from Antelope Creek.

Drainage area.-2,352 square miles.

Records available.—October 1928 to August 1933 (fragmentary), August 1937 to September 1949.

Average discharge.-12 years (1937-49), 195 second-feet.

**Extremes.**—Maximum discharge during year, 7,760 second-feet Apr. 6 (gage height, 23.3 feet); maximum gage height, 24.1 feet (backwater from ice) Apr. 3; minimum daily discharge, 7 second-feet Feb. 21 to Mar. 4; minimum gage height 3.19 feet Oct. 1-3.

1928-33, 1937-49: Maximum discharge, 11,400 sccond-feet Mar. 26 or 27, 1943 (gage height, 26.3 feet, from floodmarks); no flow (estimated) Jan. 21 to Feb. 5 1933.

**Remarks.**—Records good except those for periods of ice effect, which are poor. Gage read once daily to Mar. 22 and twice daily or oftener, thereafter. Some diversions above station. Flow regulated by Ilo Lake (capacity, 7,130 acre-feet).

| Month              | Second<br>Foot Days | Maximum | Minimum | Mean  | Run-off in<br>Acre-Feet |
|--------------------|---------------------|---------|---------|-------|-------------------------|
| October            | 1.039               | 41      | 30      | 33.5  | 2,060                   |
| November           | 957                 | 37      | 28      | 31.9  | 1,900                   |
| December           | 801                 | 35      | 20      | 25.8  | 1.590                   |
| January            | 571                 | 23      | 14      | 18.4  | 1.130                   |
| February           | 561                 | 100     | ii l    | 19.3  | 1.110                   |
| March              | 43.840              | 6.700   | 25      | 1.414 | 86.960                  |
| April              | 23,994              | 3.590   | 156     | 800   | 47.590                  |
| May                | 6.029               | 847     | 53      | 194   | 11,960                  |
| June               | 8.980               | 1.990   | 60 (    | 299   | 17,810                  |
| July               | 2,310               | 177     | 43      | 74.5  | 4,580                   |
| August             | 1,139               | 53      | 22      | 36.7  | 2,260                   |
| September          | 617                 | 21      | 19      | 20.6  | 1,220                   |
| i                  | •                   | Ì       | i       |       |                         |
| Water Year 1947-48 | 90,838              | 6,700   | 11      | 248   | 180,200                 |

| Month              | Second<br>Foot Days | Maximum | Minimum | Mean  | Run-off in<br>Acre-Feet |
|--------------------|---------------------|---------|---------|-------|-------------------------|
| October            | 748                 | 31      | 19      | 24.1  | 1,480                   |
| November           | 989                 | 40      | 28      | 33.0  | 1,960                   |
| December           | 595                 | 28      | 14      | 19.2  | 1,180                   |
| January            | 347                 | 14      | 10      | 11.2  | 688                     |
| February           | 226                 | 9       | 7       | 8.1   | 448                     |
| March              | 4,604               | 3,000   | 7 1     | 149   | 9.130                   |
| April              | 64,342              | 7.640   | 155     | 2.145 | 127,600                 |
| Мау                | 3,425               | 194     | 83      | 110   | 6,790                   |
| June               | 2,761               | 323     | 48      | 92.0  | 5,480                   |
| July               | 1,682               | 111     | 40      | 54.3  | 3,340                   |
| August             | 1,489               | 149     | 27      | 48.0  | 2,950                   |
| September          | 823                 | 47      | 24      | 27.4  | 1,630                   |
| Water Year 1948-49 | 82,031              | 7,640   | 7       | 225   | 162,700                 |

### HEART RIVER BASIN Heart River near Lark, N. Dak.

**Location.**—Water-stage recorder, lat.  $46^{\circ}36'00''$ , long.  $101^{\circ}22'30''$ , in  $S\frac{1}{2}$  sec. 9, T. 136 N., R. 85 W., at bridge on State Highway 31, 1 mile downstream from Muddy Creek and 10 miles north of Lark. Prior to Nov. 16, wire-weight gage at same site and datum.

Records available .--- June 1946 to September 1949.

Extremes .--- Maximum discharge during year, 9,810 second-feet Mar. 29 (gage-height, 14.72 feet); minimum daily, 0.3 second-foot Feb. 15 to Mar. 4.

1946-49: Maximum discharge, 10,400 second-feet Mar. 25, 1947 (gage height, 15.85 feet); minimum, that of Feb. 15 to Mar. 4, 1949.

Remarks .- Records good except those for periods of ice effect or no gage-height record, which are fair. Gage read intermittently.

| Month              | Second<br>Foot Days | Maximum | Minimum   | Mean        | Run-off in<br>Acre-Feet |
|--------------------|---------------------|---------|-----------|-------------|-------------------------|
| October            | 858.5               | 36      | 7.5       | 27.7        | 1,700                   |
| November           | 687                 | 36      |           | 22.9        | 1,360                   |
| December           | 262                 | 16      | 3         | 8.5         | 520<br>581              |
| January            | 293                 | 100     | 25        | 9.5<br>411  | 22.810                  |
| February           | $11,498 \\ 34,254$  | 1,800   | 20<br>45  | 1.105       | 67.940                  |
| March              | 32.967              | 3.500   | 170       | 1.099       | 65,390                  |
| April              | 2,787               | 150     | 55        | 89.9        | 5,530                   |
| June               | 26,140              | 5,400   | 48        | 871         | 51,850                  |
| July               | 6,815               | 1,060   | 51        | 220<br>76.4 | 13,520<br>4,700         |
| August             | 2,369<br>558        | 327     | 25-<br>15 | 18.6        | 1,110                   |
| September          |                     | 00      |           |             |                         |
| Water Year 1946-47 | 119,488.5           | 7,800   | 2         | 327         | 237,000                 |

| Month              | Second<br>Foot Days | Maximum | Minimum | Mean  | Run-off in<br>Acre-Feet |
|--------------------|---------------------|---------|---------|-------|-------------------------|
|                    |                     | 1       |         |       |                         |
| October            | 723                 | 35      | 15      | 23.3  | 1,430                   |
|                    | 648                 | 28      | 19      | 21.6  | 1.290                   |
|                    | 484                 | 18      | 13      | 15.6  | 960                     |
| December           | 304                 | 13      | 7       | 9.8   | 603                     |
| January            | 693                 | 1 100   | i i     | 23.9  | 1.370                   |
| February           |                     |         | 15      | 1.894 | 116.500                 |
| March              | 58,721              | 7,500   |         |       | 31,700                  |
| April              | 15,981              | 1,750   | 130     | 533   |                         |
| May                | 4,460               | 399     | 55      | 144   | 8,850                   |
| June               | 6.717               | 1,700   | 55      | 224   | 13,320                  |
| July               | 6.701               | 2.000   | 36      | 216   | 13,290                  |
| August             | 2.579               | 500     | 13      | 83.2  | 5,120                   |
| September          | 263.4               | 12      | 7.1     | 8.78  | 522                     |
| Water Year 1947-48 | 98.274.4            | 7,500   | 6       | 269   | 195,000                 |

| Month              | Second<br>Foot Days | Maximum | Minimum | Mean  | Run-off in<br>Acre-Feet |
|--------------------|---------------------|---------|---------|-------|-------------------------|
|                    |                     |         |         | 1     |                         |
| October            | 462.2               | 31      | 7       | 14.9  | 917                     |
| November           | 900                 | 55      | 20      | 30.0  | 1,790                   |
| December           | 346                 | 24      | 6       | 11.2  | 686                     |
| anuary             | 48.8                | 6       | .6      | 1.57  | 97                      |
| February           | 10.5                | .6      | .3      | .38   | 21                      |
| March              | 32,718.2            | 9,000   | .3      | 1,055 | 64,900                  |
| April              | 72,587              | 8,380   | 148     | 2,420 | 144,000                 |
| May                | 3.310               | 243     | 66      | 107   | 6,570                   |
| lune               | 1.822               | 192     | 21      | 60.7  | 3,610                   |
| July               | 786                 | 53      | 15      | 25.4  | 1,560                   |
| August             | 1.054.4             | 1 119   | 9.7     | 34.0  | 2,090                   |
| September          | 312.6               | 24      | 5.5     | 10.4  | 620                     |
| Water Year 1948-49 | 114,357.7           | 9,000   | .3      | 313   | 226,900                 |

### HEART RIVER BASIN

# Heart River near Mandan, N. Dak.

Location.—Water-stage recorder and wire-weight gage, lat. 46°50′, long. 100°59′, in NE¼NW¼ sec. 25, T. 139 N., R. 82 W., at bridge on U. S. Highway 10, 3 miles west of Mandan and 4 miles downstream from Sweetbriar Creek. Datum of gage is 1,638.70 feet above mean sea level, datum of 1929, and 1,632.03 feet above Northern Pacific Railway datum.

Drainage area.---3,360 square miles.

Records available .- April to September 1924, March 1928 to June 1933, August 1937 to September 1949.

Average discharge.-14 years (1929, 1931, 1937-49), 266 second-feet.

Extremes.—Maximum discharge during year, about 16,000 second-feet Mar. 29; maximum gage height, 21.95 feet Mar. 29, affected by ice: no flow Jan. 20 to Mar. 7. 1924, 1928-33, 1937-49: Maximum discharge, 21,400 second-feet Mar. 27, 1943 (gage height, 24.7 feet); no flow on many days.

Remarks .- Records good except those for periods of ice effect or no gage-height record, which are poor. Some diversions above station. Revision (water years).—W 926: 1938.

| Month              | Second<br>Foot Days | Maximum | Minimum | Mean  | Run-off in<br>Acre-Feet |
|--------------------|---------------------|---------|---------|-------|-------------------------|
| October            | 1.047               | 45      |         | 33.8  | 2,080                   |
| November           | 839                 | 53      | 13      | 28.0  | 1,660                   |
| December           | 359                 | 21      | L L     | 11.6  | 712                     |
| January            | 168                 | 100     | i       | 5.4   | 333                     |
| February           | 12.549              | 2.200   | 30      | 448   | 24.890                  |
| March              | 43.397              | 9.500   | 68      | 1.400 | 86.080                  |
| April              | 39.369              | 3,950   | 259     | 1.312 | 78.090                  |
| May                | 3.805               | 238     | 68      | 123   | 7.550                   |
| June               | 26.596              | 4.900   | 62      | 887   | 52,750                  |
| July               | 8,912               | 1.040   | 77      | 287   | 17.680                  |
| August             | 2.673               | 255     | 42      | 86.2  | 5.300                   |
| September          | 953                 | 105     | 17      | 31.8  | 1,890                   |
| Water Year 1946-47 | 140,667             | 9,500   | 1       | 385   | 279,000                 |

| Month              | Second<br>Foot Days | Maximum | Minimum | Mean  | Run-off in<br>Acre-Feet |
|--------------------|---------------------|---------|---------|-------|-------------------------|
| October            | 951                 | 105     | 17      | 30.7  | 1.000                   |
| November           | 878                 | 47      | 21      | 29.3  | 1,890                   |
| December           | 594                 | 21      | 17      | 19.2  | 1,740                   |
| anuary             | 321                 | 16      | 6       | 10.4  | 1,180                   |
| February           | 51.3                | 1 19    | .2      | 1.77  | 637                     |
| March              | 90.012.8            | 11.600  |         |       | 102                     |
| April              | 26.171              | 3.300   | 242     | 2,900 | 171,500                 |
| lay                | 5.716               | 380     |         | 872   | 51,910                  |
| une                | 7.220               | 1.610   | 80      | 184   | 11,340                  |
| uly                | 7,162               | 1.780   | 75      | 241   | 14,320                  |
| August             | 2.810               | 350     | 52      | 231   | 14,210                  |
| eptember           | 400.8               |         | 15      | 90.6  | 5,570                   |
| representation     | 400.8               | 27      | 6.9     | 14.4  | 795                     |
| Water Year 1947-48 | 142,287.9           | 11,600  | .2      | 389   | 282,200                 |

| Month              | Second<br>Foot Days | Maximum | Minimum | Mean  | Run-off in<br>Acre-Feet |
|--------------------|---------------------|---------|---------|-------|-------------------------|
| October            | 621                 | 34      | 13      | 20.0  | 1.230                   |
| November           | 9 <b>1</b> 9        | 45      | 20      | 30.6  |                         |
| December           | 396                 | 32      | 20      | 12.8  | 1,820<br>785            |
| January            | 39.0                | 5       | ี ถึงไ  | 1.26  | 180                     |
| February           | Ő                   | ĬŎ      | ň       | 1.20  |                         |
| larch              | 32.612.9            | 9.940   | ŏ       | 1.052 | 64,690                  |
| April              | 87,436              | 9.470   | 198     | 2.915 | 173,400                 |
| Lay                | 4,656               | 296     | 91      | 150   | 9.240                   |
| une                | 2,485               | 180     | 22      | 82.8  | 4.930                   |
| aly                | 1,199               | 90      | 26      | 38.7  | 2,380                   |
| August             | 1.375               | 188     | ĪŽ      | 44.4  | 2,380                   |
| September          | 489                 | 24      | 12      | 16.3  | 970                     |
| Water Year 1948-49 | 132,227.9           | 9,940   | 0       | 362   | 262,300                 |

# HEART RIVER BASIN

Muddy Creek near Almont, N. Dak.

Location.--Wire-weight gage, lat. 46°41'40", long. 101°27'50", in SW¼, sec. 7, T. 137 N., R. 85 W., at bridge on county road, 2 miles downstream from Hailstone Creek, 3 miles southeast of Almont, and 12 miles (revised) upstream from mouth.

Records available .- October 1945 to September 1949.

Extremes.—Maximum discharge during year, 1,400 second-feet Apr. 1 (gage height, 15.41 feet); no flow Jan. 21 to Feb. 16, Feb. 18-22.

1945-49: Maximum discharge, 2,250 second-feet Mar. 24. 1948 (gage height, 19.20 feet, affected by ice); no flow at times.

Remarks .--- Records fair.

| Month              | Second<br>Foot Days | Maximum | Minimum | Mean | Run-off in<br>Acre-Feet |
|--------------------|---------------------|---------|---------|------|-------------------------|
| October            | 63.0                | 3.5     | 1.0     | 2.03 | 125                     |
| November           | 58.8                | 3.4     | 1.4     | 1.96 | 117                     |
| December           | 32.5                | 1.7     | 5       | 1.05 | 64                      |
| January            | 142.2               | 40      | .2      | 4.59 | 282                     |
| February           | 968.9               | 350     | .3      | 34.6 | 1,920                   |
| March              | 4.658               | 1.300   | 2       | 150  | 9,240                   |
| April              | 3,287               | 400     | 13      | 110  | 6,520                   |
| May                | 124.3               | 10      | 1.8     | 4.01 | 247                     |
| lune               | 3.118.7             | 932     | 1.8     | 104  | 6.190                   |
| luly               | 345.4               | 46      | 1.7     | 11.1 | 685                     |
| August             | 31.6                | 1.8     | .4      | 1.02 | 63                      |
| September          | 15.7                | .8      | .4      | .52  | 31                      |
| Water Year 1946-47 | 12,846.1            | 1,300   | .2      | 35.2 | 25,480                  |

| Month              | Second<br>Foot Days | Maximum | Minimum  | Mean  | Run-off in<br>Acre-Feet |
|--------------------|---------------------|---------|----------|-------|-------------------------|
|                    | 27.9                | 2.0     | 0.5      | 0.90  | 55                      |
| October            |                     |         | 1.0      | 1.25  | 74                      |
| November           | 37.5                | 1.5     |          |       |                         |
| December           | 38.4                | 1.4     | .9       | 1.24  | 76                      |
| January            | 46.5                | 6       | .3       | 1.50  | 92                      |
| February           | 168.1               | 30      | .3<br>.2 | 5.80  | 333                     |
| March              | 13.011.4            | 2,150   | 1.0      | 420 İ | 25.810                  |
| April              | 4.916               | 973     | 11       | 164   | 9.750                   |
| May                | 240.0               | 21      | 1.9      | 7.74  | 476                     |
| June               | 110.8               | 1 11    | 1.4      | 3.69  | 220                     |
| July               | 388.3               | 150     | .6       | 12.5  | 770                     |
| August             | 25.3                | 2.6     | .4       | .82   | 50                      |
| September          | 13.1                | .6      | .4       | .44   | 26                      |
| Water Year 1947-48 | 19.023.3            | 2.150   | .2       | 52.0  | 37,730                  |

| Month              | Second<br>Foot Days | Maximum | Minimum | Mean | Run-off in<br>Acre-Feet |
|--------------------|---------------------|---------|---------|------|-------------------------|
|                    |                     |         |         | 0.00 | 10                      |
| October            | 21.4                | 1.1     | 0.5     | 0.69 | 42                      |
| November           | 33.0                | 1.3     | .9      | 1.10 | 65<br>22                |
| December           | 10.9                | 1.1     | .1      | .35  |                         |
| January            | 2.0                 | .1      | 0       | .06  | 4.0                     |
| February           | - 7                 | 1 .1    | Ó       | .02  | 1.4                     |
| March              | 3.852.3             | 1.270   | .1      | 124  | 7,640                   |
|                    | 10.112.8            | 1,360   | 8.4     | 337  | 20,060                  |
| April              | 494.5               |         | 2.3     | 16.0 | 981                     |
| Мау                |                     | 160     |         |      |                         |
| June               | 208.4               | 54      | .7      | 6.95 | 413                     |
| July               | 41.7                | 4.6     | .6      | 1.35 | 83                      |
| August             | 86.5                | 23      | .4      | 2.79 | 172                     |
| September          | 17.4                | .8      | .4      | .58  | 35                      |
| Water Year 1948-49 | 14,881.6            | 1,360   | · o     | 40.8 | 29,520                  |

### APPLE CREEK BASIN

Apple Creek near Menoken, N. Dak.

Location.—Staff gage, lat. 46°47'35", long. 100°39'15", on line between secs. 4 and 9, T. 138 N., R. 79 W., at bridge on former U. S. Highway 10, 4 miles upstream from Hay Creek, 6.3 miles west of Menoken, and 6.4 miles east of Bismarck.

Drainage area.---1,520 square miles.

Records available .- October 1945 to September 1949.

Extremes.—Maximum discharge during year, 750 second-feet Apr. 5 (gage height, 12.40 feet, affected by ice); minimum, 0.1 second-feet Feb. 1 to Mar. 3, Sept. 22, 23.

1945-49: Maximum discharge, 2,340 sec.-ft. Apr. 7, 1948 (gage height, 15.80 feet); no flow Aug. 25 to Sept. 17, 1946.

Remarks .-- Records good except those for period Dec. 10 to Mar. 23, which are poor.

| Month              | Second<br>Foot Days | Maximum | Minimum | Mean | Run-off in<br>Acre-Feet |
|--------------------|---------------------|---------|---------|------|-------------------------|
| October            | 21.7                | 2.0     |         | 0.70 | 43                      |
| November           | 15.0                | 2.0     | 0.2     | .50  | 30                      |
|                    |                     |         | 0.2     | .50  |                         |
| December           | 24.0                |         |         | .77  | 48                      |
| January            | 26.1                | 5.0     |         | .84  | 52                      |
| February           | 25.6                | 8.0     |         | .91  | 51                      |
| March              | 4.482.5             | 780     |         | 145  | 8.890                   |
| April              | 3.829               | 360     | 26      | 128  | 7.590                   |
| May                | 347                 | 22      |         | 11.2 | 688                     |
| June               | 511.7               | 40      | 4.7     | 17.1 | 1.010                   |
| July               | 428                 | 34      | 2       | 13.8 | 849                     |
| August             | 15.5                | 1.0     |         | .50  | 31                      |
| September          | 14.9                |         |         | .50  | 30                      |
| Water Year 1946-47 | 9,741.0             | 780     | .2      | 26.7 | 19.310                  |

| Month              | Second<br>Foot Days | Maximum |       | Mean | Run-off in<br>Acre-Feet |
|--------------------|---------------------|---------|-------|------|-------------------------|
| October            | 13.3                | 1.0     | .2    | .43  | 26                      |
| November           | 15.2                | 4.1     | .1    | .51  | <b>3</b> 0              |
| December           | 7.2                 | .4      | .i    | .23  | 14                      |
| January            | 4.6                 | .2      |       | .15  | - <u>-</u> 9.           |
| February           | 15.1                | 1.0     | i i i | .52  | 30                      |
| March              | 57.4                | 15      | .4    | 1.85 | 114                     |
| April              | 20.061              | 2.000   | 50    | 669  | 39.790                  |
| May                | 2,516.9             | 200     | .3    | 81.2 | 4.990                   |
| June               | 413.1               | 30      | 4.4   | 13.8 | 819                     |
| July               | 305.2               | 28      | 3.6   | 9.85 | 605                     |
| August             | 90.6                | 5.6     | 1.1   | 2.92 | 180                     |
| September          | 19.2                | 1.0     | .3    | .64  | 38                      |
| Water Year 1947-48 | 23,518.8            | 2,000   | .1    | 64.3 | 46,650                  |

| Month              | Second<br>Foot Days | <br>  Maximum | Minimum | Mean | Run-off in<br>Acre-Feet |
|--------------------|---------------------|---------------|---------|------|-------------------------|
| October            | 9.7                 | 0.5           | 0.2     | 0.31 | 19                      |
| November           | 20.9                | 1.1           | .4      | .70  | 41                      |
| December           | 18.7                | 1.0           | ••      | .60  | 37                      |
| January            | 14.0                | 1.0           | .2      | .45  | 28                      |
| February           | 2.8                 | 1.1           |         | .1   | - Ĕ                     |
| March              | 873.3               | 240           | .2      | 28.2 | 1.730                   |
| April              | 6.556               | 700           | 31      | 219  | 13.000                  |
| Мау                | 391.4               | 31            | 4.7     | 12.6 | 776                     |
| June               | 510.8               | 49            | 2.7     | 17.0 | 1.010                   |
| July               | 88.8                | 13            | 1.0     | 2.86 | 176                     |
| August             | 192.8               | 48            | .4      | 6.22 | 382                     |
| September          | 14.3                | .9            |         | .48  | 28                      |
| Water Year 1948-49 | 8,693.5             | 700           | .1      | 23.8 | 17,230                  |

### CANNONBALL RIVER BASIN Cannonball River at Breien, N. Dak.

Location.—Water-stage recorder, staff, and wire-weight gage, lat. 46°23', long. 100°56', in sec. 36, T. 134 N., R. 82 W., at bridge on State Highway 6, 950 feet down-stream from Louise Creek and 0.5 mile south of Breien. Datum of gage is 1,676.54 feet above mean sea level, datum of 1929.

Drainage area.-4,066 square miles.

Records available .-- August 1934 to September 1949.

Average discharge.-15 years, 229 second-feet.

Extremes.---Maximum discharge during year, 8,320 second-feet Apr. 1; maximum gage height, 11.9 feet Mar. 30 (from floodmark), affected by ice; no flow Feb. 20 to Mar. 1.

1934-49: Maximum discharge, 21,900 sccond-fret Mar. 27, 1943 (gage height, 17.4 feet, from floodmark); no flow at times in some years.

**Remarks.**—Records good except those for period of ice effect, which are fair. Some diversions above station. Some storage in several small lakes above station.

| Month              | Second<br>Foot Days | Maximum | <br>  Minimum | Mean  | Run-off in<br>Acre-Feet |
|--------------------|---------------------|---------|---------------|-------|-------------------------|
| October            | 1.7.96.2            | 222     | 6.6           | 57.9  | 3,560                   |
| November           | 676                 | 48      | 13            | 22.5  | 1.340                   |
| December           | 250.0               | 16      | 2.5           | 8.06  | 496                     |
| January            | 321.5               | 175     | 2.5           | 10.4  | 638                     |
| February           | 12,605              | 2.000   | 25            | 450   | 25,000                  |
| March              | 27.745              | 7.000   | 80            | 895 İ | 55,030                  |
| April              | 29,629              | 2,980   | 199           | 988   | 58.770                  |
| May                | 3.029               | 182     | 57            | 97.7  | 6.010                   |
| June               | 28,922              | 4.640   | 53            | 964   | 57.370                  |
| July               | 7,930               | 926     | 53            | 256   | 15.730                  |
| August             | 812                 | 50      | 12            | 26.2  | 1.610                   |
| September          | 266.5               | 15      | 6.6           | 8.88  | 529                     |
| Water Year 1946-47 | 113,982.2           | 7,000   | 2.5           | 312   | 226,100                 |

| Month              | Second<br>Foot Days | Maximum | Minimum | Mean  | Run-off in<br>Acre-Feet |
|--------------------|---------------------|---------|---------|-------|-------------------------|
| October            | 1,181.6             | 158     | 7.3     | 38.1  | 2,340                   |
| NT 1               | 960                 | 128     | 18      | 32.0  | 1.900                   |
|                    |                     |         |         |       |                         |
| December           | 587                 | 40      | 14      | 18.9  | 1,160                   |
| January            | 573                 | 30      | 7       | 18.5  | 1,140                   |
| February           | 1,187               | 320     | 1       | 40.9  | 2,350                   |
| March              | 72,760              | 11.100  | 50      | 2,347 | 144.300                 |
| April              | 8.897               | 658     | 124     | 297   | 17,650                  |
| May                | 4.089               | 536     | 42      | 132   | 8.110                   |
| June               | 2,311               | 244     | 26      | 77.0  | 4,580                   |
| July               | 4,283               | 412     | 51      | 138   | 8,500                   |
|                    | 2.391               | 162     | 25      | 77.1  | 4.740                   |
|                    | 236.2               |         |         | 7.87  |                         |
| September          | 230.2               | 25      | 2.5     | 7.87  | 468                     |
| Water Year 1947-48 | 99,455.8            | 11,100  | 1       | 272   | 197,200                 |

| Month              | Second<br>Foot Days | Maximum | Minimum | Mean  | Run-off in<br>Acre-Feet |
|--------------------|---------------------|---------|---------|-------|-------------------------|
|                    | 105 4               | 10      | 2,5     | 6.30  | 388                     |
| October            | 195.4               | 21      |         |       |                         |
| November           | 761                 | 40      | 16      | 25.4  | 1,510                   |
| December           | 319                 | 20      | 6       | 10.3  | 633                     |
| January            | 79.5                | 8       | .2      | 2.56  | 158                     |
| February           | 2.0                 | .2      | 0 1     | .07   | 4.0                     |
| March              | 55.052.3            | 8,000   | lŏi     | 1.776 | 109.200                 |
| April              | 65,935              | 8.200   | 169     | 2,198 | 130,800                 |
| May                | 9,889               | 3,160   | 82      | 319   | 19.610                  |
| June               | 4,606               | 1.660   | 29      | 154   | 9,140                   |
| July               | 971                 | 74      | 10      | 31.3  | 1.930                   |
| August             | 1.882.4             | 330     | 8.0     | 60.7  | 3.730                   |
| September          | 396.9               | 27      | 4.8     | 13.2  | 787                     |
| Water Year 1948-49 | 140.089.5           | 8,200   | 0       | 384   | 277.900                 |

# JAMES RIVER BASIN

### James River at Jamestown, N. Dak.

Location.—Wire-weight gage, lat. 46°54′, long. 98°41′, in SE¼ sec. 36, T. 140 N., R. 64 W., at Asylum bridge at southeast corner of Jamestown, 2.5 miles downstream from Pipestem Creek.

Drainage area.-2,740 square miles.

Records available.--June 1928 to August 1933, August 1937 to September 1938, March 1943 to September 1949.

Average discharge.---12 years (1928-33, 1937-38, 1943-49) 41.3 second-fect.

Extremes.—Maximum discharge during year, 1,350 second-feet Apr. 23 (gage height, 10.06 feet); minimum observed discharge, 1.1 second-feet Oct. 9; minimum gage-height record observed, 2.55 feet, Sept. 30.

1928-33, 1937-38, 1943-49: Maximum discharge, 3,250 second-feet Apr. 23, 1948; maximum gage-height, 14.31 feet Apr. 24, 1948; no flow June 28, 29, July 4, 5, 1933.

Remarks.—Records good from March to August, otherwise fair. Gage read once daily. Flow regulated by Arrowood and Jim Lakes (capacity, 16,000 acre-feet).

| Month              | Second<br>Foot Days | Maximum | Minimum         | Mean | Run-off in<br>Acre-Feet |
|--------------------|---------------------|---------|-----------------|------|-------------------------|
| October            | 139.0               | 17      | 1.6             | 4.48 | 276                     |
| November           | 42.3                | 2.5     | 1.1             | 1.41 | 84                      |
| December           | 57.3                | 2.5     | 1.2             | 1.85 | 114                     |
| January            | 75.9                | 15      | 1.2             | 2.45 | 151                     |
| February           | 55.5                | 6.4     | 1.2             | 1.98 | 110                     |
| March              | 3.201.5             | 550     | 1.2             | 103  | 6,350                   |
| April              | 8.226               | 680     | 41 <sup> </sup> | 274  | 16,320                  |
| May                | 1,553               | 128     | 16              | 50.1 | 3,080                   |
| June               | 1.318               | 86      | 13              | 43.9 | 2,610                   |
| July               | 1.756               | 148     | 22              | 56.6 | 3,48                    |
| August             | 357.5               | 27      | 1.7             | 11.5 | 70                      |
| September          | 43.0                | 1.6     | 1.2             | 1.43 | - 81                    |
| Water Year 1946-47 | 16,825.0            | 680     | 1.1             | 46.1 | 33,37(                  |

| Month              | Second<br>Foot Days | Maximum | Minimum | Mean  | Run-off in<br>Acre-Fee |
|--------------------|---------------------|---------|---------|-------|------------------------|
|                    |                     |         |         |       |                        |
| October            | 61.4                | 3.4     | 1.5     | 1.98  | 122                    |
| November           | 66.2                | 2.6     | 1.9     | 2.21  | 131                    |
| December           | 76.4                | 2.6     | 2.2     | 2.46  | 152                    |
| January            | 76.7                | 2.9     | 1.8     | 2.47  | 152                    |
| n 1 (              | 60.5                | 2.4     | 1.8     | 2.09  | 120                    |
|                    | 3.453.5             | 750     | 2.4     | 111   | 6.850                  |
| March              | 43.737              | 3.140   | 397     | 1.458 | 86.750                 |
| April              | 16,860              | 1.740   | 103     | 544   | 33.440                 |
| May                |                     |         |         | 67.6  | 4.020                  |
| June               | 2,027               | 98      |         |       |                        |
| July               | 1,151               | 55      | 26      | 37.1  | 2,280                  |
| August             | 895.1               | 42      | 9.1     | 28.9  | 1,780                  |
| September          | 78.9                | 11      | 1.2     | 2.63  | 156                    |
|                    |                     | 1       |         |       |                        |
| Water Year 1947-48 | 68,543.7            | 3,140   | 1.2     | 187   | 136,000                |

| Month              | Second<br>Foot Days | Maximum | Minimum | Mean | Run-off in<br>Acre-Feet |
|--------------------|---------------------|---------|---------|------|-------------------------|
|                    |                     | [       |         | 1    |                         |
| October            | 88.1                | 5.0     | 1.1     | 2.84 | 175                     |
| November           | 62.6                | ( 3.8   | 1.2     | 2.09 | 124                     |
| December           | 56.0                | 2.0     | 1.6     | 1.81 | 111                     |
| January            | 66.3                | 2.7     | 1.7     | 2.14 | 132                     |
| February           | 56.9                | 2.3     | 1.8     | 2.03 | 113                     |
| March              | 2.841.8             | 689     | 2.0     | 91.7 | 5,640                   |
|                    | 20.651              | 1.230   | 245     | 688  | 40.960                  |
|                    | 3.537               | 236     | 28      | 114  | 7.020                   |
| May                | 3.035               | 295     | 22      | 101  | 6.020                   |
| June               |                     | 96      | 6.0     | 23.7 | 1.460                   |
| July               | 735.5               |         |         |      | 221                     |
| August             | 111.6               | 8.6     | 1.7     | 3.60 |                         |
| September          | 66.9                | 3.2     | 1.6     | 2.23 | 133                     |
|                    |                     | 1       |         |      |                         |
| Water Year 1948-49 | 31,308.7            | 1,230   | 1.1     | 85.8 | 62,110                  |

### LITTLE MISSOURI RIVER BASIN Little Missouri River at Marmarth, N. Dak.

Location.—Wire-weight gage, lat. 46°14′, long. 103°54′, in SE¼ sec. 30, T. 133 N., R. 105 W., at highway bridge in Marmarth,  $1\frac{1}{2}$  miles downstream from Little Beaver Creek.

Drainage area.-4,570 square miles.

Records available .- March 1938 to September 1949.

Average discharge.---11 years, 402 second-feet.

Extremes.—Maximum discharge during year, 11,700 second-feet Mar. 24 (gage height, 11.2 feet, from graph based on gage readings; no flow at times.

1938-49: Maximum discharge. 45,000 second-feet Mar. 23, 1947 (gage height, 21.7 feet); no flow for part of most winters.

**Remarks.**—Records fair except those for periods of ice effect or doubtful or no gageheight record, which are poor. Gage read once or twice daily, oftener during high stages. Some small diversions above station for irrigation.

| Month              | Second<br>Foot Days | Maximum | Minimum | Mean  | Run-off in<br>Acre-Feet |
|--------------------|---------------------|---------|---------|-------|-------------------------|
| October            | 21,948              | 2,230   | 41      | 708   | 43.530                  |
| November           | 7.224               | 1,490   | 25      | 241   | 14.330                  |
| December           | 3.096               | 500     | 5       | 100   | 6.140                   |
| January            | 469                 | 90      | 3       | 15.1  | 930                     |
| February           | 27.319              | 4.500   | 5       | 97.6  | 54.190                  |
| March              | 85,735              | 28,300  | 50 1    | 2.766 | 170.100                 |
| April              | 41,050              | 6,710   | 190     | 1.368 | 81.420                  |
| Мау                | 3,264               | 200     | 55      | 105   | 6.470                   |
| June               | 45,262              | 6,980   | 58      | 1,509 | 89.780                  |
| July               | 9,769               | 1.300   | 44      | 315   | 19.380                  |
| August             | 3,290               | 773     | 15      | 106   | 6.530                   |
| September          | 442                 | 22      | 10      | 14.7  | 877                     |
| Water Year 1946-47 | 248,868             | 28,300  | 3       | 682   | 493,700                 |

| Month              | Second<br>Foot Days | Maximum | Minimum | Mean  | Run-off in<br>Acre-Feet |
|--------------------|---------------------|---------|---------|-------|-------------------------|
| October            | 658                 | 60      | 12      | 21.2  | 1,310                   |
| November           | 449                 | 40      | 10      | 15.0  | 891                     |
| December           | 423                 | 30      | - Ř     | 13.6  | 839                     |
| January            | 1,448               | 350     | 4       | 46.7  | 2.870                   |
| February           | 3.022               | 1.000   | 2       | 104   | 5,990                   |
| March              | 46.430              | 6.000   | 10      | 1.498 | 92.090                  |
| April              | 13,655              | 2,050   | 155     | 455   | 27.080                  |
| May                | 5,683               | 460     | 32      | 183   | 11.270                  |
| June               | 22.274              | 3.950   | 45      | 742   | 44.180                  |
| July               | 13,800              | 1.860   | 58      | 445   | 27.370                  |
| August             | 5,579               | 2.340   | 11      | 180   | 11.070                  |
| September          | 191.3               | 10      | 3.0     | 6.38  | 379                     |
| Water Year 1947-48 | 113,612.3           | 6,000   | 2       | 310   | 225,300                 |

| Month              | Second<br>Foot Days | Maximum  | Minimum | Mean  | Run-off in<br>Acre-Feet |
|--------------------|---------------------|----------|---------|-------|-------------------------|
| October            | 300.5               | 15       | 4       | 9.69  | 596                     |
| November           | 1.328               | 101      | 16      | 44.3  | 2.630                   |
| December           | 193                 | 30       | -ñ i    | 6.2   | 383                     |
| Janúary            | 10                  | ŏŏ       | ŏĺ      | ŏ."   | 000                     |
| February           | ŏ                   | l ŏ l    | ŏ       | ŏi    | ň                       |
| March              | 109.510             | 11.000 I | ŏi      | 3.533 | 217.20 <b>0</b>         |
| April              | 40.054              | 3.550    | 188     | 1.335 | 79.450                  |
| May(               | 4,409               | 248      | 94      | 142   | 8,750                   |
| June               | 1,269               | 83       | 13      | 42.3  | 2,520                   |
| July               | 874.2               | 203      | 6.2     | 28.2  | 1.730                   |
| August             | 239.8               | 64       | .7      | 7.74  | 476                     |
| September          | 174.0               | 25       | 1.7     | 5.80  | 345                     |
| Water Year 1948-49 | 158,351.5           | 11,000   | 0       | 434   | 314.100                 |

#### LITTLE MISSOURI RIVER BASIN Little Missouri River at Medora, N. Dak.

Location.—Wire-weight gage, lat. 46°55′10″, long. 103°31′40″, in NE¼ sec. 27, T. 140 N., R. 102 W., at bridge on U. S. Highway No. 10, 1 mile upstream from Andrews Creek.

Drainage area.—6,190 square miles.

Records available.---May 1903 to October 1908, October 1921 to September 1924, August 1928 to September 1934, October 1945 to September 1949.

Extremes.—Maximum discharge during year, 14,600 second-feet Mar. 27; maximum gage height, 13.0 feet (flood mark, backwater from ice); minimum daily discharge, 0.2 second-foot Feb. 15 to Mar. 3.

1903-08; 1921-24; 1928-34; 1945-49; Maximum discharge, 65,000 second-fcet Mar. 23, 1947 (gage height, 20.5 feet); no flow at times during 1933, 1934 and 1946.

Remarks.—Records good except those for periods of ice effect or no gage height record, which are poor. Gage usually read once daily; two or three times daily at higher stages. Some small diversions above station for irrigation.

| Month              | Second<br>Foot Days | Maximum | Minimum | Mean  | Run-off in<br>Acre-Feet |
|--------------------|---------------------|---------|---------|-------|-------------------------|
|                    |                     | 1       |         |       |                         |
| October            | 22.227              | 2.340   | 66 1    | 717   | 44,090                  |
| November           | 11.074              | 1,540   | 35      | 369   | 21.960                  |
| December           | 3,922               | 450     | 12      | 127   | 7,780                   |
| January            | 1.392               | 400     | 7       | 44.9  | 2,760                   |
| February           | 30.104              | 5.000   | 1 4     | 1.075 | 59,710                  |
| March              | 110.410             | 38.000  | 100     | 3.562 | 219,000                 |
| April              | 77,109              | 8.360   | 343     | 2,570 | 152,900                 |
| May                | 5,692               | 320     | 117     | 184   | 11,290                  |
| June               | 59,648              | 7.830   | 100     | 1,988 | 118,300                 |
| July               | 19,561              | 3.900   | 110     | 631 l | 38,800                  |
| August             | 6.451               | 1.340   | 30      | 208   | 12,800                  |
| September          | 734                 | 31      | 17      | 24.5  | 1,460                   |
|                    |                     | î       | i —     |       |                         |
| Water Year 1946-47 | 348,324             | 38,000  | 4       | 953   | 690,800                 |

| Month               | Second<br>Foot Days | Maximum | Minimum | Mean  | Run-off in<br>Acre-Feet |
|---------------------|---------------------|---------|---------|-------|-------------------------|
|                     |                     | 1 1     |         |       |                         |
| October             | 977                 | 54      | 21      | 31.5  | 1,940                   |
| November            | 530                 | 36      | 10      | 17.7  | 1,050                   |
| December            | 353                 | 20      | 8 (     | 11.4  | 700                     |
| January             | 179                 | 10      | 2       | 5.8   | 355                     |
| February            | 7.399               | 3.500   | 1 1     | 255   | 14.680                  |
| March               | 70.020              | 6.940   | 35      | 2.259 | 138,900                 |
| April               | 19.802              | 1.590   | 234     | 660 ( | 39,280                  |
| May                 | 8.372               | 542     | 79      | 270   | 16.610                  |
| June                | 30.607              | 3.350   | 136     | 1.020 | 60.710                  |
| July                | 20.269              | 2,240   | 120     | 654   | 40.200                  |
|                     | 8,465               | 2.050   | 35      | 273   | 16,790                  |
| August<br>September | 505.8               | 2,000   | 5.5     | 16.9  | 1,000                   |
| 1                   |                     |         |         |       |                         |
| Water Year 1947-48  | 167,478.8           | 6,940   | 1       | 458   | 332,200                 |

| Month              | Second<br>Foot Days | Maximum | Minimum | Mean  | Run-off in<br>Acre-Feet |
|--------------------|---------------------|---------|---------|-------|-------------------------|
| 0.4.3              | 392.6               | 26      | 8.0     | 12.7  | 779                     |
| October            | 1.288               | 95      | 17      | 42.9  | 2.550                   |
| November           |                     |         | 2       | 8.0   | 494                     |
| December           | 249                 | 40      |         |       |                         |
| January            | 27.4                | Z       | .6      | .88   | 54                      |
| February           | 8.8                 | .6      | .2      | .31   | 17                      |
| March              | 145.502.6           | 14.000  | .2      | 4,694 | 288,600                 |
| April              | 59.475              | 6.400   | i 311   | 1.982 | 118.000                 |
| May                | 6.446               | 311     | 113     | 208   | 12.790                  |
|                    | 2.047               | 151     | 17      | 68.2  | 4,060                   |
| June               | 1.154.8             | 174     | 9.8     | 37.3  | 2,290                   |
| July               |                     |         |         |       |                         |
| August]            | 768.7               | 113     | 6.1     | 24.8  | 1,520                   |
| September          | 337.0               | 31      | 6.1     | 11.2  | 668                     |
|                    |                     |         |         |       |                         |
| Water Year 1948-49 | 217.696.9           | 14.000  | .2      | 596   | 431,800                 |

#### LITTLE MISSOURI RIVER BASIN Little Beaver Creek near Marmarth, N. Dak,

Location.—Staff and wire-weight gages, lat. 46°16′, long. 103°58′, at center of sec. 7, T. 132 N., R. 106 W., a quarter of a mile downstream from Corral Creek, 34 miles southwest of Marmarth, and 5½ miles upstream from mouth.

Records available.---April 1936 to September 1949.

Average discharge.—Eleven years, 51.9 second-feet.

Extremes.---Maximum discharge during year, 3,300 second-feet Mar. 23 (gage-height, 10.5 feet, from graph based on gage readings); no flow at times.

1938-1949: Maximum discharge, 6,820 second-feet during night of June 22, 1944 (gage height, 12.5 feet, observer's estimate at site then in use) but may have been higher during flood of March 23, 1947; no flow at times.

Remarks.—Records fair except those for periods of ice effect which are poor. Gage read once daily, oftener during high stages.

| Month              | Second<br>Foot Days | Maximum | Minimum | Mean | Run-off in<br>Acre-Feet |
|--------------------|---------------------|---------|---------|------|-------------------------|
|                    | 2.258.4             | 530     | 0.5     | 72.9 | 4.480                   |
| October            | 226.1               | 19      | 4.4     | 7.54 | 448                     |
| November           |                     |         |         |      |                         |
| December           | 775.1               | 222     | 1.5     | 25.0 | 1,540                   |
| January            | 153.9               | 50      | .4      | 4.96 | 305                     |
| February           | 3.173.5             | 900     | 2       | 113  | 6,290                   |
| March              | 10.451              | 5.000   | 1 3 1   | 337  | 20,730                  |
| April              | 7.878               | 1.940   | 29      | 263  | 15.630                  |
| May                | 561                 | 26      | 11      | 18.1 | 1,110                   |
| June               | 6.101.8             | 1.280   | 6.4     | 203  | 12,100                  |
| July               | 787.1               | 136     | 4.5     | 25.4 | 1,560                   |
| August             | 1,365.0             | 1 371   | 2.1     | 44.0 | 2.710                   |
| September          | 72.3                | 4.6     | 1.2     | 2.41 | 143                     |
| Water Year 1946-47 | 33,803.2            | 5,000   | 0.4     | 92.6 | 67,050                  |

| Month              | Second<br>Foot Days | Maximum | Minimum | Mean | Run-off in<br>Acre-Feet |
|--------------------|---------------------|---------|---------|------|-------------------------|
|                    |                     |         |         |      |                         |
| October            | 133.6               | 28      | 2.2     | 4.31 | 265                     |
| November           | 98.5                | 5.6     | 2.2     | 3.28 | 1,95                    |
| December           | 85.8                | 5.6     | 2.0     | 2.77 | 170                     |
| January            | 1.541.5             | 400     | 1.4     | 49.7 | 3,060                   |
| February           | 1.790               | 800     | 1 1     | 61.7 | 3,550                   |
| March              | 7,189               | 1.800   | i i i   | 232  | 14,260                  |
| April              | 762                 | 70      | 14      | 25.4 | 1,510                   |
| May                | 1,283,1             | 539     | 5.2     | 41.4 | 2,540                   |
| June               | 6.598.0             | 1.240   | 6.4     | 220  | 13,090                  |
| July               | 984.4               | 219     | 1.0     | 31.8 | 1,950                   |
| August             | 2.250.0             | 1.870   | .3      | 72.6 | 4,460                   |
| September          | 6.9                 | .5      | .1      | .23  | 14                      |
|                    |                     | 1       |         |      |                         |
| Water Year 1947-48 | 22.722.8            | 1.870   | i .1 İ  | 62.1 | 45.060                  |

| Month     | Second<br>Foot Days | Maximum | Minimum | Mean | Run-off in<br>Acre-Feet |
|-----------|---------------------|---------|---------|------|-------------------------|
| October   | 57.6                | 4.1     | 0.5     | 1.86 | 114                     |
| November  | 148.3               | 21      | 1.4     | 4.94 | 294                     |
| December  | 30.6                | 3.1     | .1      | .99  | 61                      |
| January   | Ő                   | 0       | 0       | 0    | ō                       |
| February  | ŏ                   | Ō       | Ó       | οi   | Ó                       |
| March     | 15.805              | 3.000   | Ō       | 510  | 31,350                  |
| April     | 3.211               | 305     | 18      | 107  | 6,370                   |
| May       | 448.2               | 40      | 8.5     | 14.4 | 889                     |
| June      | 147.2               | 8.5     | 1.4     | 4.91 | 292                     |
| July      | 85.0                | 25      | .1      | 2.74 | 169                     |
| August    | 18,1                | 4.5     | 0       | .58  | 36                      |
| September | 7.6                 | 1.0     | 0       | .25  | 15                      |

#### KNIFE RIVER BASIN

#### Knife River near Golden Valley, N. Dak.

Location.—Water-stage recorder, lat. 47°09', long. 102°05', in SW¼ sec. 3, T. 142 N., R. 90 W., at highway bridge, 2½ miles downstream from Elm Creek and 10 miles south of Golden Valley.

Drainage area .--- 1,230 square miles.

**Records available.**—(In reports of Geological Survey) April 1943 to September 1949. April to November 1904 at site 3 miles downstream, published as Knife River at Broncho. March 1905 to October 1919, October 1921 to September 1924 at site 1 mile upstream, published as Knife River near Broncho.

Records as above, also June to September 1903, October 1924 to September 1925 and March to September 1927 in reports of the North Dakota Water Conservation Board.

Average discharge.-12 years (1909-11, 1921-25, 1943-49), 101 second-feet.

Extremes.—Maximum daily discharge during year, 5,300 second-feet Apr. 4: maximum gage height, 22.9 feet, backwater from ice, Apr. 4; minimum daily, 2 second-feet Feb. 1 to Mar. 2.

1903-19, 1921-24, 1943-49: Maximum discharge, 7,700 second-feet June 26, 1914 (gage height, 24.0 feet, from floodmark, site and datum then in use), from rating curve extended above 2,000 second-fect; no flow Sept. 6-8, 1905, Sept. 18, 19, 1908.

Maximum stage since 1903 (according to local residents), 26.7 feet, from floodmark, March 26, 27, 1943 (discharge, 11,500 second-feet, from rating table extended above 6,500 second-feet).

Remarks.--Records good except those for period of ice effect, which are poor.

| Month              | Second<br>Foot Days | Maximum | Minimum | Mean        | Run-off in<br>Acre-Feet |
|--------------------|---------------------|---------|---------|-------------|-------------------------|
| 1                  |                     |         |         | 100         | <b>C 4</b> 0            |
| October            | 327.4               | 12      | 9.8     | 10.6        | 649                     |
| November           | 341                 | 13      | 10      | 11.4        | 676                     |
| December           | 310                 | 13      | 9       | 10.0        | 615                     |
| January            | 216                 | 9       | 5 1     | 7.0         | 428                     |
| February           | 479                 | 70      | 4       | 16.5        | 950                     |
| March              | 27.263              | 4.100   | 10      | 879         | 54,080                  |
|                    | 7.999               | 890     | 54      | 267         | 15,870                  |
| April              | 3,492               | 645     | 20      | <b>ī</b> 13 | 6.930                   |
| Мау                |                     |         | 20      | 188         | 11,160                  |
| June               | 5,626               | 2,080   |         |             |                         |
| July               | 1,050               | 77      | 17      | 33.9        | 2,080                   |
| August             | 403.2               | 24      | 5.1     | 13.0        | 800                     |
| September          | 134.4               | 5.1     | 3.9     | 4.48        | 267                     |
| Water Year 1947-48 | 47,641.0            | 4,100   | 3.9     | 130         | 94,500                  |

| Month              | Second<br>Foot Days | Maximum | Minimum | Mean  | Run-off in<br>Acre-Feet |
|--------------------|---------------------|---------|---------|-------|-------------------------|
| October            | 196.5               | 8.8     | 4.2     | 6.34  | 3,90                    |
| November           | 282.9               | 11      | 7       | 9.43  | 561                     |
| December           | 175                 | 8       | 4       | 5.6   | 347                     |
| January            | 100                 | 4       | 3       | 3.2   | 198                     |
| February           | 56                  | 2       | 2       | 2.0 ( | 111                     |
| March              | 6.814               | 3.000   | 2       | 220   | 13,520                  |
| April              | 36,646              | 5.300   | 58      | 1,222 | 72,690                  |
| May                | 1,137               | 63      | 25      | 36.7  | 2,260                   |
| June               | 774                 | 50      | 15      | 25.8  | 1,540                   |
| July               | 621                 | 36      | 13      | 20.0  | 1,230                   |
| August             | 704.3               | 128     | 6.9     | 22.7  | 1,400                   |
| September          | 189.5               | 11      | 4.5     | 6.32  | 376                     |
| Water Year 1948-49 | 47,696.2            | 5,300   | 2       | 131   | 94,620                  |

#### KNIFE RIVER BASIN Spring Creek at Zap, N. Dak.

Location.—Water-stage recorder, lat. 47°16'50", long. 101°55'10", in SW14 sec. 14 T. 144 N., R. 89 W., 250 feet downstream from Northern Pacific Railroad trestle in Zap, and 9 miles upstream from Knife River.

Drainage area.-545 square miles.

Records available.--March to September, 1924; October 1945 to September 1949.

Extremes.--Maximum discharge during year, 2,890 second-feet Apr. 7 (gage height, 16.0 feet); no flow Feb. 1 to Mar. 6, Mar. 15-20.

1924, 1945-49: Maximum discharge, that of Apr. 7, 1949; no flow at times.

Remarks.—Records good except those for period of ice effect, which are poor. Flow regulated by Ilo Lake (capacity, 7,130 acre-feet).

| Month              | Second<br>Foot Days | Maximum | Minimum | Mean  | Run-off in<br>Acre-Feet |
|--------------------|---------------------|---------|---------|-------|-------------------------|
| October            | 255.0               |         | 7.0     | 8.23  | 506                     |
| November           | 219.7               | 9.0     | 6       | 7.32  | 436                     |
| December           | 177                 | 8       | 5       | 5.7   | 351                     |
| January            | 143                 | 6       | 3 1     | 4.6   | 284                     |
| February           | 74                  | 5       | i i     | 2.6   | 147                     |
| March              | 9.301               | 1.330   | 2       | 300   | 18,450                  |
| April              | 6,281               | 1.040   | 44      | 209 ( | 12,460                  |
| Мау                | 1.565               | 173     | 11      | 50.5  | 3,100                   |
| June               | 1.382.1             | 326     | 8.7     | 46.1  | 2,740                   |
| July               | 404.4               | 26      | 8.4     | 13.0  | 802                     |
| August             | 296.1               | 15      | 4.6     | 9.55  | 587                     |
| September          | 125.0               | 5.0     | 3.4     | 4.17  | 248                     |
| Water Year 1947-48 | 20,223.3            | 1,300   | 1       | 55.3  | 40.110                  |

| Month              | Second<br>Foot Days | Maximum | Minimum | Mean     | Run-off in<br>Acre-Feet |
|--------------------|---------------------|---------|---------|----------|-------------------------|
| October            | 193.1               | 8.7     | 5.0     | 6.23     | 383                     |
| November           | 209.3               | 8.4     | 6       | 6.98     | 415                     |
| December           | 135                 | 6       | 3       | 4.4      | 268                     |
| January            | 69                  | 3       | i i l   | 2.2      | 137                     |
| February           | Ō                   | ŏ       | l õ l   | <u>ō</u> | 101                     |
| March              | 105                 | 40      | l ŏ i   | 3.4      | 208                     |
| April              | 12,470              | 2.540   | 32      | 416      | 24.730                  |
| Мау                | 678                 | 38      | 14      | 21.9     | 1.340                   |
| June               | 523.1               | 59      | 6.4     | 17.4     | 1,040                   |
| July               | 263.2               | 12      | 7.2     | 8.49     | 522                     |
| August             | 232.1               | 17      | 4.6     | 7.49     | 460                     |
| September          | 164.7               | 6.7     | 4.8     | 5.49     | 327                     |
| Water Year 1948-49 | 15.042.5            | 2.540   | 0       | 41.2     | 29,830                  |

### HEART RIVER BASIN

### Heart River near South Heart, N. Dak.

Location.—Water-stage recorder, lat. 46°51'40", long. 102°56'50", in SW¼ sec. 8, T. 139 N., R. 97 W., half a mile downstream from North Creek and 2 miles east of South Heart.

Drainage area.-315 square miles.

Records available.---May 1947 to September 1949.

Extremes.--Maximum discharge during year, 2,400 second-feet Mar. 31 (gage height, 17.75 feet); minimum daily 0.3 second-foot Dec. 26 to Feb. 23.

1947-49: Maximum discharge, that of Mar. 31, 1949; minimum daily, 0.3 secondfoot Feb. 6-14, 1948, Dec. 26 to Feb. 23, 1949.

Remarks .- Records fair except those for periods of ice effect, which are poor.

| Month              | Second<br>Foot Days | Maximum | Minimum | Mean | Run-off ir<br>Acre-Feet |
|--------------------|---------------------|---------|---------|------|-------------------------|
| Detober            |                     |         |         |      |                         |
| November           |                     |         |         |      |                         |
| December           |                     |         |         |      |                         |
| January            |                     |         |         | 1    |                         |
| February           |                     |         |         |      |                         |
| arch               |                     |         |         |      |                         |
|                    |                     |         |         |      |                         |
| April<br>May 17-31 | 26.4                | 2.2     | 1.2     | 1.76 | 52                      |
|                    | 5.289.2             | 1.630   |         | 176  | 10,490                  |
| une                |                     | 803     |         | 50.4 | 3.100                   |
| [uly               | 1,560.9             |         |         | 1.80 | 0,100                   |
| August             | 55.8                | 15      | .6      |      | 111                     |
| September          | 26.7                | 1.2     | .6      | .89  | 53                      |
| The period 1946-47 |                     | Į       |         |      | 13.810                  |

| Month              | Second<br>Foot Days | Maximum | Minimum | Mean  | Run-off in<br>Acre-Feet |
|--------------------|---------------------|---------|---------|-------|-------------------------|
|                    |                     |         |         |       | 4.0                     |
| October            | 32.0                | 1.2     | 0.8     | 1.03  | 63                      |
| November           | 27.4                | 1.1     | .8      | .91   | 54                      |
| December           | 23.5                | 1.2     | .6      | .76   | 47                      |
| January            | 18.6                | .9      | .4      | .60]  | 37                      |
| February           | 89.0                | 15      | .3      | 3.071 | 177                     |
| March              | 8.502               | 1,530   | 1 1     | 274   | 16.860                  |
|                    | 522.5               | 1,000   | 2.8     | 17.4  | 1.040                   |
| April              |                     |         |         |       |                         |
| May                | 311.9               | 47      | 1.8     | 10.1  | 619                     |
| June               | 1,486.6             | 635     | 1.9     | 49.6  | 2,950                   |
| July               | 416.7               | 86      | 1.3     | 13.4  | 827                     |
| August             | 37.1                | 4.5     | .5      | 1.20  | 74                      |
| September          | 17.0                | .7      | .5      | .57   | 34                      |
| 1                  |                     |         |         |       |                         |
| Water Year 1947-48 | 11,484.3            | 1,530   | .3      | 31.4  | 22,780                  |

| Month              | Second<br>Foot Days | Maximum | Minimum | Mean | Run-off in<br>Acre-Feet |
|--------------------|---------------------|---------|---------|------|-------------------------|
|                    |                     |         | 1       |      |                         |
| October            | 26.5                | 1.2     | 0.7     | 0.85 | 53                      |
| November           | 39.4                | 4.3     | .7      | 1.31 | 78                      |
| December           | 13.6                | .8      | .3      | .44  | 27                      |
| January            | 9.3                 | .3      | .3 1    | .30  | 18                      |
| February           | 8.9                 | .4      | .3      | .32  | 18                      |
| March              | 4.694.9             | 1.860   | .4      | 151  | 9.310                   |
|                    | 12.964.1            | 2.260   | 6.4     | 432  | 25.710                  |
| April              | 95.7                | 7.5     | 1.8     | 3.09 | 190                     |
| May                |                     |         |         | 1.56 | 195                     |
| June               | 46.9                | 3.8     | 1.1     |      |                         |
| July               | 65.9                | 11      | .8      | 2.13 | 131                     |
| August             | 41.6                | 13      | .4      | 1.34 | 8                       |
| September          | 14.6                | .7      | .4      | .49  | 23                      |
| î                  |                     | 1       |         | 1    |                         |
| Water Year 1948-49 | 18.021.4            | 2,260   | .3      | 49.4 | 35,740                  |

115

### HEART RIVER BASIN Heart River near Dickinson, N. Dak.

Location.--Wire-weight gage, lat. 46°51'10", long. 102°53'30", in NW1/4 sec. 14, T. 139 N., R. 97 W., 3 miles upstream from Duck Creek and 5 miles west of Dickinson. Drainage area.-330 square miles.

Records available .-- June 1946 to May 1947.

Extremes .- Maximum discharge during period, 2,200 second-feet Mar. 24 (gage height, 17.0 feet, from graph based on gage readings, backwaler from ice); minimum daily discharge, 0.5 second-foot Nov. 21-30, Jan. 5-24.

1946-47: Maximum discharge, that of Mar. 24, 1947; minimum observed, 0.4 secondfoot, Aug. 9, 10, 1946.

Remarks .-- Records fair except those for periods of ice effect or no gage-height record, which are poor.

| Month               | Second<br>Foot Days | Maximum | <br>  Minimum | Mean | Run-off in<br>Acre-Feet |
|---------------------|---------------------|---------|---------------|------|-------------------------|
| October             | 191.9               | 24      | .8            | 6.19 | 381                     |
| November            | 54.8                | 6.2     | .0            | 1.83 | 109                     |
| December            | 78.0                | 12      | 1 1           | 2.5  | 155                     |
| January             | 26.0                | 1 2     | .5            | .84  | 52                      |
| February            | $2.5\overline{17}$  | 800     | 1'            | 89.9 | 4.990                   |
| March               | 6.341               | 2.000   | 2             | 205  | 12.580                  |
| April               | 6.171.0             | 1.440   | 9.0 j         | 206  | 12,240                  |
| May                 | 106.6               | 8.0     | 2.0           | 3.44 | 211                     |
| June                |                     | 1       |               |      |                         |
|                     | · -                 |         |               |      |                         |
| August<br>September |                     |         |               |      |                         |
| September           |                     |         |               |      |                         |
| The period 1946-47  |                     |         |               |      | 30,720                  |

### HEART RIVER BASIN Heart River at Lehigh, N. Dak.

Location.—Wire-weight gage, lat. 46°52', long. 102°43', in NE¼ sec. 7, T. 139 N., R. 95 W., at county highway bridge in Lehigh, 150 feet downstream from Northern Pacific Railway bridge and about 10 miles upstream from Green River.

Drainage area.-453 square miles.

Records available .- March 1943 to September 1949.

Extremes .- Maximum discharge during year, 3,800 second-feet Apr. 2; (gage height, 14.9 feet, from highwater mark, backwater from ice); minimum discharge, 0.5 second-foot Sept. 23-25 (gage height, 3.27 feet).

1943-49: Maximum discharge, 5,420 second-feet Mar. 25, 1943; maximum gage height, 17.7 feet, from floodmark, Mar. 25, 1943 and Mar. 13, 1945; no flow Mar. 14-18, 1944.

Maximum stage known, that of Mar. 25, 1943, Mar. 13, 1945.

Remarks .-- Records good above 10 second-feet and fair below, except those for periods of ice effect, which are poor. Gage read twice daily.

| Month              | Second<br>Foot Days | Maximum | Minimum  | Mean   | Run-off in<br>Acre-Feet |
|--------------------|---------------------|---------|----------|--------|-------------------------|
|                    |                     |         |          |        |                         |
| October            | 354.9               | 36      | 1.4      | 11.4   | 704                     |
|                    | 162.4               | 14      | 2        | 5.41   | 322                     |
| November           |                     | 15      | 3        | 5.4    | 331                     |
| December           | 167                 | 10      | 2        | 4.1    | 252                     |
| January            | 127                 | 17      |          |        |                         |
| February           | 3.216               | 900     | 3        | 115    | 6,380                   |
| March              | 9.053               | 3.200   | 6        | 292    | 17,960                  |
|                    | 7,856               | 1.520   | 20       | 262    | 15,580                  |
| April              | 288.2               | 16      | 2.9      | - 9.30 | 572                     |
| Мау                |                     |         |          | 204    | 12.160                  |
| June               | 6,129.0             | 1,640   | 3.2      |        |                         |
| July               | 2,260.6             | 715     | 6.6      | 72.9   | 4,480                   |
| August             | 135.7               | 14      | .8 1     | 4.38   | 269                     |
|                    | 82.6                | 5.4     | 1.2      | 2.75   | 164                     |
| September          | 04.0                |         | <u> </u> |        |                         |
| Water Year 1946-47 | 29,832.4            | 3,200   | .8       | 81.7   | 59,17                   |

| Month              | Second<br>Foot Days                                                                                  | Maximum                                                                                 | Minimum                   | Mean                                                                                                       | Run-off in<br>Acre-Feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| October            | 82.1<br>133.7<br>123<br>102<br>258<br>11,604<br>1,285.4<br>612.2<br>1,846.8<br>647.9<br>98.0<br>20.7 | $\begin{array}{c} 5.0\\ 7\\ 6\\ 25\\ 1,500\\ 200\\ 69\\ 695\\ 94\\ 10\\ 1.2\end{array}$ | 1.12.62249.43.25.83.5.4.4 | $\begin{array}{r} 2.65\\ 4.46\\ 4.0\\ 3.3\\ 8.9\\ 374\\ 42.8\\ 19.7\\ 61.6\\ 20.9\\ 3.16\\ .69\end{array}$ | $163 \\ 265 \\ 244 \\ 202 \\ 512 \\ 23,020 \\ 2,550 \\ 1,210 \\ 3,660 \\ 1,290 \\ 1,294 \\ 194 \\ 41 \\ 194 \\ 41 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\$ |
| Water Year 1947-48 | 16,813.8                                                                                             | 1,500                                                                                   | .4                        | 45.9                                                                                                       | 33,35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

| Month              | Second<br>Foot Days | Maximum | Minimum | Mean | Run-off in<br>Acre-Feet |
|--------------------|---------------------|---------|---------|------|-------------------------|
|                    |                     |         |         |      | 015                     |
| October            | 108.3               | 42      | 0.8     | 3.49 | 215                     |
| November           | 102.4               | 17      | 1       | 3.41 | 203                     |
| December           | 71                  | 5       | 1       | 2.3  | 141                     |
|                    | 58                  | 3       | 1 1     | 1.9  | 115                     |
| January            | 56                  | 2       | 2       | 2.0  | 111                     |
| February           | 5.774               | 2.000   | 2       | 186  | 11.450                  |
| March              | 17,199              | 3.000   | 14      | 573  | 34,110                  |
| April              |                     | 48      | 5.2     | 11.6 | 714                     |
| May                | 359.8               |         |         | 4.13 | 246                     |
| June               | 123.8               | 7.7     | 1.9     |      | 264                     |
| July               | 133.2               | 12      | 1.6     | 4.30 |                         |
| August             | 100.6               | 35      | .6      | 3.25 | 200                     |
| September          | 3.9.3               | 14      | .5      | 1.31 | 78                      |
| Water Year 1948-49 | 24.125.4            | 3.000   | .5      | 66.1 | 47,847                  |

117

### HEART RIVER BASIN

# Heart River near Richardton, N. Dak.

Location.---Water-stage recorder and wire-weight gage, lat. 46°45', long. 102°18', in NE¼ sec. 29, T. 138 N., R. 92 W., at bridge on State Highway 8, half a mile down-stream from Blacktail Creek and 9½ miles south of Richardton.

Brainage area. -1,310 square miles. Records available.--May 1903 to September 1922. April 1943 to September 1949.

Extremes.—Maximum discharge during year, 6,540 second-feet Apr. 6 (gage height, 18.8 feet, from graph based on gage readings); minimum daily discharge, 1 second-feet Jan. 24 to Mar. 2.

1903-1922, 1943-49: Maximum discharge, 9,920 second-feet Mar. 14, 1945 (gage height, 22.57 feet); no flow during some periods in 1903, 1905, 1914, 1919, 1945, and 1946.

Maximum stage known, about 26.0 feet July 5, 1938, from information by local resident (discharge, 14,000 second-feet). Flood of Mar. 25, 1943, reached a stage of 24.2 feet, from floodmarks (discharge

11.700 second-feet).

Remarks .-- Records good except those for periods of ice effect or indefinite stagedischarge relation, which are poor. Wire-weight gage read once daily, with additional readings on days of changing stage.

| Month              | Second<br>Foot Days | Maximum | Minimum | Mean  | Run-off in<br>Acre-Feet |
|--------------------|---------------------|---------|---------|-------|-------------------------|
| October            | 567.7               | 36      | 2.3     | 18.3  | 1,130                   |
| November           | 347                 | 25      | 6       | 11.6  | 688                     |
| December           | 407                 | 23      | 7       | 13.1  | 807                     |
| January            | 1.416               | 300     | 4       | 45.7  | 2,810                   |
| February           | 7.737               | 1.100   | 11      | 276   | 15.350                  |
| March              | 20,818              | 4,500   | 16      | 672   | 41.290                  |
| April              | 20,249              | 3,260   | 67      | 675 1 | 40,160                  |
| May                | 1,071               | 62      | 18      | 34.5  | 2,120                   |
| June               | 16,898              | 3.870   | 15      | 563   | 33.520                  |
| July               | 4,591               | 1.020   | 20      | 148   | 9.110                   |
| August             | 1,858.5             | 376     | _9.0    | 60.0  | 3,690                   |
| September          | 302.5               | 12      | 7.5     | 10.1  | 600                     |
| Water Year 1946-47 | 76,262.7            | 4,500   | 2.3     | 209   | 151,300                 |

| Month                         | Second<br>Foot Days              | Maximum                                 | Minimum                           | Mean                                                | Run-off in<br>Acre-Feet                   |
|-------------------------------|----------------------------------|-----------------------------------------|-----------------------------------|-----------------------------------------------------|-------------------------------------------|
| October                       | 367.5                            | 16                                      | 8.5                               | 11.9                                                | 729                                       |
| November                      | 422                              | 1 19                                    | 11                                | 14.1                                                | 837                                       |
| December                      | 321                              | 1 17                                    | 11                                | 10.4                                                | 637                                       |
| January                       | 235                              | 13                                      |                                   | 7.6                                                 | 466                                       |
| February                      | 888                              | 100                                     | 2                                 | 30.6                                                | 1.760                                     |
| March                         | 29,393                           | 3.500                                   | . ซึ่ง                            | 948                                                 | 58.300                                    |
| April                         | 6,531                            | 950                                     | 60                                | 218                                                 | 12,950                                    |
| May                           | 2,846                            | 312                                     | 20                                | 91.8                                                |                                           |
| June                          | 5,422                            | 1,580                                   | 20                                | 181                                                 | $5,640 \\ 10.750$                         |
| July                          | 4,232                            | 1,720                                   | 12                                | 137                                                 | 8.390                                     |
| August                        | 794.5                            | 279                                     | 5.5                               | 25.6                                                | 1.580                                     |
| September                     | 118.0                            | 6.0                                     | 2.8                               | 3.93                                                | 234                                       |
| Month                         | Second<br>Foot Days              | Maximum                                 | Minimum                           | Mean                                                | Run-off in<br>Acre-Feet                   |
|                               |                                  |                                         |                                   |                                                     | 11010-11000                               |
| October                       | 256.1                            | 16                                      | 4 i                               | 8.26                                                | 508                                       |
| November                      | 416                              | 21                                      | 10                                | 13.9                                                | 825                                       |
| December                      | 180                              | 14                                      | 3                                 | 5.8                                                 | 357                                       |
| January                       | 56                               | 3                                       | 1                                 | 1.8                                                 | 111                                       |
|                               |                                  |                                         |                                   |                                                     |                                           |
|                               | 28                               | 1                                       | ĩ                                 | 1.0                                                 | 56                                        |
| March                         | 15,395                           | 3,600                                   | īÌ                                |                                                     | 56<br>30.550                              |
| March                         | 15,395<br>43,161                 | 3,600<br>6,050                          | 1<br>68                           | 1.0                                                 | 30,550                                    |
| March<br>April<br>May         | 15,395<br>43,161<br>1,648        | 3,600<br>6,050<br>93                    | 1<br>68<br>31                     | 1.0<br>497<br>1,440<br>53.2                         |                                           |
| March<br>April<br>May<br>June | 15,395<br>43,161<br>1,648<br>676 | 3,600<br>6,050<br>93<br>74              | 1<br>68<br>31<br>11               | 1.0<br>497<br>1,440                                 | 30,550<br>85,610                          |
| March                         | 15,39543,1611,648676496.3        | 3,600<br>6,050<br>93<br>74<br>70        | 1<br>68<br>31<br>11<br>9.3        | 1.0<br>497<br>1,440<br>53.2                         | 30,550<br>85,610<br>3,270                 |
| March                         | 15,39543,1611,648676496.3567.6   | 3,600<br>6,050<br>93<br>74<br>70<br>153 | 1<br>68<br>31<br>11<br>9.3<br>4.4 | 1.0<br>497<br>1,440<br>53.2<br>22.5<br>16.0<br>18.3 | 30,550<br>85,610<br>3,270<br>1,340        |
| March                         | 15,39543,1611,648676496.3        | 3,600<br>6,050<br>93<br>74<br>70        | 1<br>68<br>31<br>11<br>9.3        | 1.0<br>497<br>1,440<br>53.2<br>22.5<br>16.0         | 30,550<br>85,610<br>3,270<br>1,340<br>984 |

# HEART RIVER BASIN

Heart River near Glen Ullin, N. Dak.

Location.-Water-stage recorder, lat. 46°35'50", long. 101°48'05", in NE¼ Sec. 13, T. 136 N., R. 89 W., 10 miles upstream from Heart Butte Creek, 14 miles south of Glen

Ullin, and 14 miles north of Elgin. Drainage area.-1,760 square miles.

Records available.---April 1943 to September 1949.

Extremes.---Maximum discharge during year, 7,300 second-feet Mar. 28 (gage height, 10.78, backwater from ice); minimum discharge, 0.3 second-feet Sept. 30 (gage height, 1.37 feet).

1943-49: Maximum discharge, 25,000 second-feet Mar. 24, 1947 (gage height 21.5 feet, former site and datum, from floodmark, backwater from ice); no flow Dec. 21-28, 1945. Feb. 13-18, 1946.

Flood of Mar. 25, 1943 reached a stage of 18.77 feet, former site and datum (discharge 20,000 second-feet, by slope-area method).

Remarks .-- Records good except those for periods of ice effect, which are poor. Flow regulated by Heart Butte Reservoir after September 29, 1949.

| Month              | Second<br>Foot Days                                                                                                       | Maximum                                                                                                    | Minimum                                      | Mean                                                                                                        | Run-off in<br>Acre-Feet                                                                                             |
|--------------------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Dottolar           | $\begin{array}{r} 676.6\\ 535\\ 447\\ 1,786\\ 8,751\\ 29,168\\ 24,788\\ 1,594\\ 20,373\\ 6,204\\ 2,098\\ 391 \end{array}$ | $\begin{array}{r} 34\\ 29\\ 25\\ 350\\ 1,400\\ 12,000\\ 3,370\\ 101\\ 4,110\\ 1,100\\ 322\\ 15\end{array}$ | $3.6\\8\\4\\15\\24\\115\\21\\17\\38\\13\\11$ | $\begin{array}{c} 21.8\\ 17.8\\ 14.4\\ 57.6\\ 313\\ 941\\ 826\\ 51.4\\ 679\\ 200\\ 67.7\\ 13.0 \end{array}$ | $\begin{array}{c} 1,340\\ 1,060\\ 887\\ 3,540\\ 57,850\\ 49,170\\ 3,160\\ 40,410\\ 12,310\\ 4,160\\ 776\end{array}$ |
| Water Year 1946-47 | 96,811.6                                                                                                                  | 12,000                                                                                                     | 3.6                                          | 265                                                                                                         | 192,000                                                                                                             |

| Month              | Second<br>Foot Days                                                                                                   | Maximum                                                                                                 | Minimum                                                         | Mean                                                                                                        | Run-off in<br>Acre-Feet                                                                                                   |
|--------------------|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| Mohin              | $\begin{array}{c} 565\\ 507\\ 376\\ 207\\ 1,032\\ 38,215\\ 8,691\\ 3,534\\ 6,396\\ 6,375\\ 2,551\\ 240.3 \end{array}$ | $\begin{array}{r} 24\\ 24\\ 20\\ 15\\ 150\\ 4,300\\ 1,000\\ 335\\ 1,780\\ 2,150\\ 707\\ 9,3\end{array}$ | $13 \\ 11 \\ 9 \\ 2 \\ 20 \\ 86 \\ 36 \\ 41 \\ 26 \\ 10 \\ 6.9$ | $18.2 \\ 16.9 \\ 12.1 \\ 6.7 \\ 35.6 \\ 1,230 \\ 290 \\ 114 \\ 213 \\ 206 \\ 82.3 \\ 8.01 \\ \end{bmatrix}$ | $\begin{array}{c} 1,120\\ 1,010\\ 746\\ 411\\ 2,050\\ 75,800\\ 17,240\\ 7,010\\ 12,690\\ 12,640\\ 5,060\\ 477\end{array}$ |
| Water Year 1947-48 | 68,689.3                                                                                                              | 4,300                                                                                                   | 2                                                               | 188                                                                                                         | 136,300                                                                                                                   |

| Month              | Second<br>Foot Days                                                                      | Maximum                                                                     | Minimum                                                                                | Mean                                                                                      | Run-off in<br>Acre-Feet                                                                   |
|--------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| Detober            | 396.2<br>657<br>279<br>45<br>28,217<br>53,029<br>2,087<br>1,107<br>656<br>876.7<br>274.8 | 29<br>29<br>24<br>3<br>1<br>6,500<br>6,730<br>114<br>100<br>43<br>222<br>22 | $\begin{array}{c} 6.9\\ 15\\ 3\\ 1\\ 1\\ 1\\ 100\\ 46\\ 18\\ 12\\ 7.4\\ .3\end{array}$ | 12.8<br>21.9<br>9.0<br>1.5<br>1.0<br>910<br>1,770<br>67.3<br>36.9<br>21.2<br>28.3<br>9.16 | 786<br>1,300<br>553<br>856<br>55,977<br>105,200<br>4,147<br>2,200<br>1,300<br>1,744<br>54 |
| Water Year 1948-49 | 87,652.7                                                                                 | 6,730                                                                       | .3                                                                                     | 240                                                                                       | 173,900                                                                                   |

# HEART RIVER BASIN Green River near Gladstone, N. Dak.

Location.—Wire-weight gage, lat. 46°53'20", long. 102°38'20", in SW¼ sec. 36, T. 140 N., R. 95 W., at bridge on U. S. Highway 10, 3 miles northwest of Gladstone and 3 miles upstream from the mouth.

Drainage area.-356 square miles.

Records available.—October 1945 to September 1949.

Extremes.---Maximum discharge during year, 3,780 second-feet Apr. 5 (gage height 16.9 feet); minimum, 0.8 second-foot Aug. 10.

1945-49: Maximum daily discharge, that of Apr. 5, 1949; no flow at times in 1946.

Maximum stage known, about 20 feet March 1943.

Remarks.—Records fair except those for period of ice effect, which are poor. Gage read once daily.

| Month              | Second<br>Foot Days | Maximum | Minimum | Mean           | Run-off in<br>Acre-Feet |
|--------------------|---------------------|---------|---------|----------------|-------------------------|
| October            | 155.5               | 8.0     | 1.9     | r 00           |                         |
| November           | 109.2               | 5.0     | 1.0     | 5.02j<br>3.64j | 308                     |
| December           | 140.5               | 12      | -       | 4.53           | 217                     |
| January            | 118                 | 15      | 2       | 3.8            | $279 \\ 234$            |
| February           | 2.682               | 800     | 5       | 95.8           | 5.320                   |
| March              | 8.237               | 2.200   | 4       | 266            | 16.340                  |
| April              | 7,982               | 1.310   | 18      | 266            | 15.830                  |
| May                | 302.3               | 17      | 6.1     | 9.75           | 600                     |
| lune               | 5.527.1             | 1.280   | 5.4     | 184            | 10.960                  |
| July               | 894.7               | 232     | 5.4     | 28.9           | 1.780                   |
| August             | 1.598.3             | 440     | 4.8     | 51.6           | 3,170                   |
| September          | 112.7               | 5.2     | 2.6     | 3.76           | 224                     |
| Water Year 1946-47 | 27,859.3            | 2,200   | 1.9     | 76.3           | 55,260                  |

| Month              | Second<br>Foot Days | Maximum | Minimum | Mean | Run-off in<br>Acre-Feet |
|--------------------|---------------------|---------|---------|------|-------------------------|
| October            | 137.4               | 6.3     | 3.2     | 4.43 | 0.7.0                   |
| November           | 183.9               | 7       | 5       | 6.13 | 273                     |
| December           | 134                 |         |         | 4.3  | 365                     |
| January            | 95                  | ÷ i     | 5       |      | 266                     |
| February           | 389                 | 60      | 4       |      | 188                     |
| March              | 10,446              | 1.700   | 4       | 13.4 | 772                     |
| April              | 3.258               | 450     | 18      | 337  | 20,720                  |
| May                | 1.327.8             | 168     |         | 109  | 6,460                   |
| lune               | 2,962.5             | 1.080   | 9.8 1   | 42.8 | 2,630                   |
| July               | 508.8               |         | 9.5     | 98.8 | 5,880                   |
| August             | 183.6               | 47      | 5.9     | 16.4 | 1,010                   |
| September          | 57.3                | 10      | 2.0     | 5.92 | 364                     |
| September 1        | 07.3                | 3.0     | 1.4     | 1.91 | 114                     |
| Water Year 1947-48 | 19,683.3            | 1,700   | 1.4     | 53.8 | 39,040                  |

| Month              | Second<br>Foot Days | Maximum | Minimum | Mean  | Run-off in<br>Acre-Feet |
|--------------------|---------------------|---------|---------|-------|-------------------------|
| October            | 112.0               | 6       | 2.2     | 3.61  |                         |
| November           | 164.8               | 1 7     | 4.4     | 5.49  | 222<br>327              |
| December           | 144                 | 6       | 2       | 4.6   | 286                     |
| January            | 70                  | 3       | 2       | . 2.3 | 13.9                    |
| February           | 56                  | 2       | 2       | 2.0   | 135                     |
| March              | 1.274               | 350     | 2       | 41.1  | 2.530                   |
| April              | 16,633              | 3.420   | 20      | 554   | 32,990                  |
| May                | 578                 | 56      | 10      | 18.6  | 1,150                   |
| June               | 210.9               | 10      | 5.7     | 7.03  | 418                     |
| July               | 111.1               | 5       | 2.2     | 3.58  | 220                     |
| August             | 70.7                | 8.4     | .8      | 2.28  | 140                     |
| September          | 43.3                | 2.0     | .9      | 1.44  | 86                      |
| Water Year 1948-49 | 19,467.8            | 3,420   | 0.8     | 53.3  | 38.620                  |

# HEART RIVER BASIN

### Antelope Creek near Carson, N. Dak.

Location.---Wire-weight gage, lat. 46°32', long. 101°39', 'in NW14 NE14 sec. 8, T. 135 N., R. 87 W., at county road bridge, 4 miles upstream from mouth and 8 miles northwest of Carson.

Drainage area.-221 square miles.

Records available .-- June 1948 to September 1949.

Extremes.---Maximum discharge observed during year, 1300 second-feet Mar. 28 (gage height, 13.84 feet, affected by ice); no flow at times.

1948-49: Maximum discharge, that of Mar. 28, 1949; no flow at times in each year.

Maximum stage known, 17.1 feet Mar. 25, 1943.

Remarks.-Records fair. Gage read once daily Oct. 1 to Nov. 13 and intermittently from Mar. 26 to Sept. 30.

| Month           | Second<br>Foot Days | Maximum  | Minimum   | Mean | Run-off in<br>Acre-Feet |
|-----------------|---------------------|----------|-----------|------|-------------------------|
|                 |                     |          |           |      |                         |
| October         |                     |          |           |      |                         |
| November        |                     |          |           |      |                         |
| December        |                     |          |           |      |                         |
| January         |                     |          |           |      |                         |
| February        |                     |          | <u></u>   |      |                         |
| March           |                     | l        |           |      |                         |
| April           |                     | ]        |           |      |                         |
| May             |                     |          | ···· ···· |      |                         |
| June 23-30      | 28.9                | 5.6      | 2.2       | 3.61 | _5'                     |
| July            | 291.1               | 1 75     | .2        | 9.39 | 57'                     |
| August          | 18.5                | 2.2      | 1 0 1     | .60  | 37                      |
|                 | -0.0                | 1 0      | i ō i     | 0 i  | (                       |
| September       |                     | <u> </u> |           |      |                         |
|                 |                     |          |           |      | 67                      |
| The period 1948 |                     |          | - 1       |      | 01.                     |

| Month              | Second<br>Foot Days | Maximum  | Minimum         | Mean | Run-off in<br>Acre-Feet |
|--------------------|---------------------|----------|-----------------|------|-------------------------|
|                    |                     |          |                 | 0.00 | 5.4                     |
| October            | 2.7                 | 0.6      | 0               | 0.09 |                         |
| November           | 31.9                | 1.6      | .7              | 1.06 | 63                      |
| December           | 7.7                 | 1.0      |                 | .25  | 15                      |
| January            | 1.0                 |          | 1 1             | .03  | 2.0                     |
| February           | 0                   | 0        | 0               | 0    | 0                       |
| March              | 4.607               | 1.200    | Í 0             | 149  | 9,140                   |
|                    | 1,961.9             | 428      | 7.0             | 65.4 | 3,890                   |
|                    | 248.7               | 48       | 2.9             | 8.02 | 493                     |
| Мау                | 56.2                | 20       | .3              | 1.87 | 111                     |
| June               | 61.1                | 25       | 1 · · i         | 1.97 | 121                     |
| July               |                     |          | 0 <sup>-1</sup> | .05  | 3.                      |
| August             | 1.5                 | · · ·    |                 |      | 0.1                     |
| September          | 0                   | <u> </u> |                 |      |                         |
| Water Year 1948-49 | 6,979.7             | 1,200    | 0               | 19.1 | 13,840                  |

### CANNONBALL RIVER BASIN Cannonball River near New Leipzig, N. Dak.

Location.—Water-stage recorder, lat. 46°20', long. 101°57', in SW¼ sec. 11, T. 133 N., R. 90 W., at bridge on State Highway No. 49, 2½ miles south of New Leipzig and 8 miles downstream from Thirtymile Creek.

Drainage area.---1,180 square miles (revised),

Records available.---April 1943 to September 1949.

Extremes.-Maximum discharge during year, 5,350 second-feet Mar. 30; maximum gage height, 18.3 fect, backwater from ice, Mar. 28; no flow at times in February and March.

1943-49: Maximum discharge, 8,000 second-feet Mar. 24, 1947 (gage height, 20.5 feet); no flow at times in 1946 and 1949; minimum gage height, 4.54 feet Aug. 12, 1946.

Maximum discharge known, 15,000 second-feet Mar. 25, 26, 1943 (gage height, 26.9 feet, from floodmarks), by slope-area method,

Remarks .--- Records good except those for period of ice effect, which are poor. Some diversions and some storage in small lakes above station.

| Month              | Second<br>Foot Days | Maximum | Minimum | Mean | Run-off in<br>Acre-Feet |
|--------------------|---------------------|---------|---------|------|-------------------------|
| October            | 250.2               |         | 6.1     | 8.07 | 496                     |
| November           | 280.3               | 13      | 7.7     | 9.34 | 556                     |
| December           | 198                 | ĩŏ      | 4       | 6.4  | 393                     |
| January            | 147                 | 9       | 3       | 4.7  | 292                     |
| February           | 299                 | 80      | Ž       | 10.3 | 593                     |
| March              | 16,995              | 2.000   | 20 1    | 548  | 33,710                  |
| April              | 1,955               | 150     | 32      | 65.2 | 3.880                   |
| Мау                | 907                 | 71      | 11      | 29.3 | 1.800                   |
| June               | 655.2               | 53      | 7.3     | 21.8 | 1.300                   |
| July               | 2,019               | 213     | 15      | 65.1 | 4,000                   |
| August             | 1,535               | 258     | 8.2     | 49.5 | 3.040                   |
| September          | 147.3               | 7.3     | 2.9     | 4.91 | 292                     |
| Water Year 1947-48 | 25,388.0            | 2,000   | 2       | 69.4 | 50.350                  |

| Month              | Second<br>Foot Days | Maximum | Minimum | Mean          | Run-off in<br>Acre-Feet |
|--------------------|---------------------|---------|---------|---------------|-------------------------|
| October            | 157.9               | 18      | 2.5     | 5 00          |                         |
| November           | 274.5               | 12      | 4.0     | 5.09          | 313                     |
| December           | 100                 | 14      |         | $9.15 \\ 3.2$ | 544                     |
| January            | 15.5                | · ·     |         | o.4<br>.5     | 198<br>31               |
| February           | 2.8                 |         |         |               |                         |
| March              | 19.726              | 4.910   |         | 636           | 5.                      |
| April              | 26.769              | 4.770   | 41      | 892           | 39,130                  |
| May                | 1.096               | 68      | 22      | 35.4          | $53,100 \\ 2.170$       |
| June               | 676.1               | 63      | 3.6     | 22.5          | 1.340                   |
| July               | 313.3               | 47      | 3.4     | 10.1          | 1,340<br>621            |
| August             | 1.154               | 602     | 3.6     | 37.2          | 2,290                   |
| September          | 139.7               | 8.9     | 2.9     | 4.66          | 2,290                   |
| Water Year 1948-49 | 50,424.8            | 4,910   | 0       | 138           | 100.000                 |

### CANNONBALL RIVER BASIN Cedar Creek near Pretty Rock, N. Dak.

Location.—Water-stage recorder lat. 46°02′, long. 101°49′, in S½ sec. 33, T. 130 N., R. 89 W., at county highway bridge, 7 miles north of Keldron, S. Dak., 10½ miles south of Pretty Rock, and 15 miles downstream from Timber Creek.

Drainage area.-1,260 square miles.

Records available .- April 1943 to September 1949.

Extremes.-Maximum daily discharge during year, 3,500 second-feet, Apr. 2; maximum gage height, 18.0 feet, backwater from icc, Apr. 2; no flow at times.

1943-49: Maximum discharge, 4,450 second-feet (revised) Apr. 20, 1944 (gage height, 14.9 feet); no flow at times; minimum gage height, 2.51 feet Sept. 6, 1946.

Maximum stage known, 21.8 feet, from floodmarks, March 24, 1943 (discharge, 15,000 second-feet).

Remarks .-- Records good except those below five second-feet, which are fair, and those for periods of ice effect, which are poor.

Revisions .- Revised figures of discharge for high water periods in the water years 1944 and 1947 are given herein. They supersede those previously published.

| Month                   | Second<br>Foot Days | Maximum        | Minimum  | Mean         | Run-off in<br>Acre-Feet |
|-------------------------|---------------------|----------------|----------|--------------|-------------------------|
| April 1944<br>June 1944 | 33,563<br>11,208    | 4,410<br>1,150 | 54<br>13 | 1,119<br>374 | 66,570<br>22,230        |
| Water Year 1943-44      | 49,724.9            | 4,410          |          | 136          | 98,630                  |

| Month                   | Second<br>Foot Days | <br>  Maximum  | Minimum   | Mean       | Run-off in<br>Acre-Feet |
|-------------------------|---------------------|----------------|-----------|------------|-------------------------|
| April 1947<br>June 1947 | 9,134<br>10,209.4   | 1,620<br>2,720 | 38<br>6.1 | 305<br>340 | 18,120<br>20,250        |
| Water Year 1946-47      | 40,533.2            | 3,000          | .2        | 111        | 80,400                  |

| Month                                                                                                                                                                                | Second<br>Foot Days                                                                              | Maximum                                                                                  | Minimum                                                                                   | Mean                                                                                                         | Run-off in<br>Acre-Feet                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| October     I       November     I       December     I       January     February       April     I       March     I       June     I       June     June       July     September | 66.3<br>109.6<br>132<br>87<br>866<br>15,983<br>1,439<br>573.4<br>853.1<br>1,109<br>786.8<br>36.7 | $\begin{array}{r} 4.2\\ 6\\ 5\\ 150\\ 1,900\\ 149\\ 42\\ 80\\ 80\\ 106\\ 4.7\end{array}$ | $\begin{array}{r} .2\\ 3\\ 3\\ 2\\ 1\\ 20\\ 22\\ 5.4\\ 3.8\\ 15\\ 6.1\\ .2\\ \end{array}$ | $\begin{array}{c} 2.14\\ 3.65\\ 4.3\\ 2.8\\ 29.9\\ 516\\ 48.0\\ 18.5\\ 28.4\\ 35.8\\ 25.4\\ 1.22\end{array}$ | 132<br>217<br>262<br>173<br>1,720<br>31,720<br>2,850<br>1,140<br>1,690<br>2,200<br>1,560<br>73 |
| Water Year 1947-48                                                                                                                                                                   | 22,041.9                                                                                         | 1,900                                                                                    | .2                                                                                        | 60.2                                                                                                         | 43,720                                                                                         |

| Month                                                                                                              | Second<br>Foot Days                                                                                                   | Maximum                                                                                                         | Minimum                                                                                  | Mean                                                                                                | Run-off in<br>Acre-Feet                                                                              |
|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| October<br>November<br>December<br>January<br>March<br>April<br>May<br>June<br>July<br>July<br>August<br>September | $\begin{array}{r} 3.0\\ 116.6\\ 78.0\\ 12.4\\ 2.8\\ 17,212\\ 18,602\\ 857\\ 253.8\\ 48.6\\ 265.9\\ 9.0\\ \end{array}$ | $\begin{array}{r} 0.6\\ 5.7\\ 4.3\\ \hline \\ 3,000\\ 3,500\\ 5,500\\ 5,7\\ 20\\ 4.3\\ 156\\ 1.1\\ \end{array}$ | $\begin{array}{c} 0\\ .3\\ 1.3\\ \hline \\ 0\\ 42\\ 14\\ 2.4\\ .5\\ 0\\ 0\\ \end{array}$ | $\begin{array}{c} 0.10\\ 3.89\\ 2.52\\ .4\\ 555\\ 620\\ 27.6\\ 8.46\\ 1.57\\ 8.58\\ .30\end{array}$ | $\begin{array}{c} 6\\ 231\\ 155\\ 25\\ 5\\ 34,140\\ 36,900\\ 1,700\\ 503\\ 96\\ 527\\ 18\end{array}$ |
| Water Year 1948-49                                                                                                 | 37,461.1                                                                                                              | 3,500                                                                                                           | 0                                                                                        | 103                                                                                                 | 74,310                                                                                               |

# GRAND RIVER BASIN

# North Fork Grand River at Haley, N. Dak.

Location.—Wire-weight gage, lat.  $45^{\circ}57'$ , long. 103°07', in NE¼ sec. 36, T. 129 N., R. 100 W., at bridge on county road about 300 feet south of post office at Haley and half a mile north of the South Dakota State line.

Records available.---May 1908 to September 1917 (no winter records), October 1945 to September 1949.

Extremes.—Maximum discharge during year, 1,770 second-feet Mar. 28; maximum gage height, 14.0 feet from graph based on gage readings, backwater from ice; no flow at times.

1908-17, 1945-49: Maximum discharge observed, 5,810 second-feet March 31, 1913, discharge measurement (gage height, 9.85 feet, datum then in use); no flow at times.

Remarks.—Records good except those for period of ice effect, which are poor. Gage read once daily or oftener.

| Month              | Second<br>Foot Days | Maximum | Minimum | Mean | Run-off in<br>Acre-Feet |
|--------------------|---------------------|---------|---------|------|-------------------------|
| October            | 46.5                | 2.0     | 1.2     | 1.50 | 92                      |
| November           | 70.7                | 3.1     | 2.0     | 2.36 | 140                     |
| December           | 72.8                | 3.1     | 2.0     | 2.35 | 140                     |
| January            | 18.4                | 2.2     | .8      | 1.56 | 96                      |
| February           | 1.096.2             | 250     | .7      | 37.8 | 2.170                   |
| March              | 4.220               | 1.100   | 1.0     | 136  |                         |
| April              | 357.7               | 19      | 4.9     | 11.9 | 8,370                   |
| May                | 176.2               | 19      | 1.9     | 5.68 | 709                     |
| lune               | 293.7               | 50      | 1.3     |      | 349                     |
| luly               | 923.7               | 214     | 2.2     | 9.79 | 583                     |
| August             | 44.9                | 2.7     |         | 29.8 | 1,830                   |
| September          | 15.1                | .8      | .4      | 1.45 | 89                      |
|                    | 10.1                |         | 3       | .50  |                         |
| Water Year 1947-48 | 7,365.9             | 1,100   | .3      | 20.1 | 14,600                  |

| Month                                                                                                      | Second<br>Foot Days                                                                                               | Maximum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Minimum                                                         | Mean                                                                                                       | Run-off in<br>Acre-Feet                                                               |
|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| October<br>November<br>December<br>January<br>March<br>April<br>May<br>June<br>July<br>August<br>September | $\begin{array}{c} 23.4\\ 38.2\\ 28.2\\ 4.5\\ 0\\ 10,698\\ 4.318\\ 369.3\\ 157.4\\ 213.1\\ 52.1\\ 27.3\end{array}$ | $1.0 \\ 2.2 \\ 1.2 \\ .5 \\ 0 \\ 1,600 \\ 580 \\ 21 \\ 16 \\ 96 \\ 12 \\ 1.8 \\ 1.8 \\ 1.8 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0$ | 0.6<br>.8<br>.5<br>0<br>0<br>17<br>6.9<br>1.5<br>.7<br>.2<br>.3 | $\begin{array}{c} 0.75\\ 1.27\\ .91\\ .15\\ 0\\ 345\\ 144\\ 11.9\\ 5.25\\ 6.87\\ 1.68\\ .91\\ \end{array}$ | $\begin{array}{r} 46\\76\\56\\9\\0\\21,220\\8,560\\732\\312\\423\\103\\54\end{array}$ |
| Water Year 1948-49                                                                                         | 15,929.5                                                                                                          | 1,600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                               | 43.6                                                                                                       | 31,590                                                                                |

# STATE OF NORTH DAKOTA

# RED RIVER OF THE NORTH BASIN Red River of the North at Wahpeton, N. Dak.

Location.—Chain gage, lat. 46°15′55″, long. 96°35′40″, in NE¼ sec. 8, T. 132 N., R. 47 W., in Wahpeton, 800 feet downstream from confluence of Bois de Sioux and Otter Tail Rivers. Datum of gage is 942.97 fect above mean sea level, datum of 1929.

Drainage area.-4,010 square miles.

Records available.--April 1942 to September 1949

Extremes.---Maximum discharge during year, 2,290 second-feet July 10 (gage height, 9.24 feet); minimum daily, 40 second-feet Dec. 31, Jan. 1.

1942-49: Maximum daily discharge, 5,000 second-feet Apr. 2-6, 1943; maximum gage height, 14.75 feet Apr. 2, 1943, from floodmark (affected by ice); minimum daily discharge, that of Dec. 31, 1948, Jan. 1, 1949.

Remarks.—Records good except those for periods of ice effect or doubtful gage height record, which are fair. Gage read twice daily. Flow regulated by Lake Traverse Reservoir and by several power plants on Otter Tail River.

| Month              | Second<br>Foot Days | Maximum | Minimum | Mean       | Run-off ir<br>Acre-Feet |
|--------------------|---------------------|---------|---------|------------|-------------------------|
|                    |                     |         |         |            |                         |
| October            | 6.085               | 258     | 169     | 196        | 12,070                  |
|                    | 6.153               | 250     | 149     | 205        | 12,200                  |
|                    | 5,780               | 210     | 160     | 186        | 11,460                  |
| December           | 4.610               | 180     | 120     | <b>149</b> | 9,140                   |
| anuary             |                     |         | 80      | 115        | 6,620                   |
| February           | 3,340               | 140     |         | 256        | 15.750                  |
| March              | 7,940               | 800     | 80      |            |                         |
| April              | 38,374              | 2,200   | 616     | 1,279      | 76,110                  |
| May                | 43,492              | 1.640   | 859     | 1,403      | 86,270                  |
| une                | 16.360              | 1.120   | 330     | 545        | 32,450                  |
| July               | 7,920               | 359     | 183     | 255        | 15,710                  |
|                    | 6.731               | 265     | 183     | 217        | 13.350                  |
| August             | 5.377               | 241     | 139     | 179        | 10.670                  |
| September          | 0,511               | 241     | 1 501   |            | 1 10,010                |
| Water Year 1947-48 | 152.162             | 2,200   | 80      | 416        | 301,800                 |

| Month              | Second<br>Foot Days | Maximum  | Minimum | Mean   | Run-off in<br>Acre-Feet |
|--------------------|---------------------|----------|---------|--------|-------------------------|
|                    |                     | <u> </u> |         |        |                         |
| a                  | 4,055               | 222      | 58      | 131    | 8.040                   |
| October            |                     |          | 75      | 118    | 7.010                   |
| November           | 3,532               | 152      |         |        |                         |
| December           | 1.698               | 80       | 40      | 54.8   | 3,370                   |
| January            | 2.163               | i 90     | 40      | 69.8 ] | 4,290                   |
|                    | 2.400               | 110      | 70      | 85.7   | 4.760                   |
| February           |                     |          | 100     | 242    | 14.900                  |
| March              | 7,510               | 900      |         |        |                         |
| April              | 12.191              | 1,130    | 125     | 406    | 24,180                  |
| May                | 6,755               | 313      | 149     | 218    | 13,400                  |
|                    | 6.740               | 284      | 202     | 225    | 13.370                  |
| June               |                     | 2.240    | 180     | 728    | 44.750                  |
| July]              | 22,559              |          |         |        |                         |
| August             | 6,143               | 395      | 120     | 198    | 12,180                  |
| September          | 2,764               | 125      | 66      | 92.1   | 5,480                   |
|                    |                     |          | 1 1     | 015    | 155 200                 |
| Water Year 1948-49 | 78,510              | 2,240    | 40      | 215    | 155,700                 |

# **RED RIVER OF THE NORTH BASIN** Red River of the North at Fargo, N. Dak.

Location.---Staff gage, lat. 46°52'10", long. 96°47'00", in NE¼, sec. 7, T. 139 N., R. 48 W., just upstream from Island Park Dam in Fargo and 10 miles upstream from Sheyenne River. Datum of gage is 870.00 feet above mean sea level, adjustment of 1912.

Drainage area.---6,800 square miles.

Records available .- May 1901 to September 1949.

Average discharge.-47 years (1902-1949), 458 second-feet (unadjusted).

Extremes.---Maximum discharge during year, 2,660 second-feet July 12 (gage-height, 11.27 feet); minimum observed, 38 second-feet Nov. 1, 2 (gage-height, 7.48 feet).

1901-49: Maximum discharge, 17,000 second-feet Apr. 7, 1943 (gage height, 28.40 feet); no flow for many days in each year for period 1932-41.

Maximum stage known, 40.1 feet Apr. 7, 1897, Weather Bureau gage, datum of which is 863.5 feet above mean sea level, adjustment of 1912.

Remarks.—Records good except those for days of no gage-height record, which are fair. Flow partly regulated by several lakes in Otter Tail River Basin and municipal pools created by dams in channel of Red River. Figures of daily discharge do not include diversion by city of Fargo.

| Month              | Second<br>Foot Days | Maximum | Minimum | Mean  | Run-off in<br>Acre-Feet |
|--------------------|---------------------|---------|---------|-------|-------------------------|
| October            | 6,730               | 262     | 188     | 224   | 19 750                  |
| November           | 6.139               | 255     | 114     | 211   | 13,750                  |
| December           | 5,672               | 202     | 159     | 189   | 12,550                  |
| January            | 4.346               | 184     | 114     | 146   | 11,630<br>9,000         |
| February           | 2,996               | 131     | 83      | 146   |                         |
| March              | 6.688               | 877     | 75      | 222   | 6,300                   |
| April              | 54.174              | 3.340   | 819     | 1.812 | 13,650                  |
| May                | 50.190              | 1.990   | 1.190   | 1.627 | 107,800                 |
| June               | 18.763              | 1.270   | 396     | 633   | 100,000                 |
| July               | 8,484               | 414     | 173     |       | 37,650                  |
| August             | 6.752               | 255     |         | 281   | 17,300                  |
| September          | 5.164               |         | 195     | 226   | 13,880                  |
| september          | 0,104               | 228     | 139     | 181   | 10,770                  |
| Water year 1947-48 | 176,098             | 3,340   | 75      | 488   | 354.300                 |

| Month              | Second<br>Foot Days | Maximum | Minimum | Меал | Run-off in<br>Acre-Feet |
|--------------------|---------------------|---------|---------|------|-------------------------|
| October            | 4,384               | 188     | 56      | 149  | 9,130                   |
| November           | 3,112               | 137     | 40      | 110  | 6,540                   |
| December           | 1,962               | 90      | 47      | 69.3 | 4,260                   |
| January            | 2.024               | 88      | 42      | 71.1 | 4.370                   |
| February           | 2,416               | 106     | źõ      | 92.3 | 5.130                   |
| March              | 5,609               | 619     | 101     | 187  | 11,500                  |
| April              | 21.533              | 1.780   | 175     | 724  | 43,100                  |
| Мау                | 7.788               | 336     | 178     | 258  | 15.870                  |
| June               | 6,736               | 264     | 194     | 232  | 13,790                  |
| July               | 27,029              | 2.600   | 204     | 879  | 54.040                  |
| August             | 7,125               | 546     | 117     | 239  | 14.680                  |
| September          | 2,652               | 139     | 47      | 95.9 | 5,700                   |
| Water Year 1948-49 | 92,370              | 2,600   | 40      | 260  | 188.100                 |

# RED RIVER OF THE NORTH BASIN Red River of the North at Halstad, Minn.

Location.—Wire-weight gage, lat. 47°21', long. 96°51', on line between sec. 24 and 25, T. 145 N., R. 49 W., at highway bridge half a mile west of Halstad and 2½ miles downstream from Wild Rice River. Datum of gage is 826.65 feet above mean sea level, datum of 1929.

Drainage area.-21,800 square miles (includes 3,940 square miles in closed Devils Lake Basin).

Records available .--- March 1936 to June 1937 (no winter records); April 1942 to August 1949 (fragmentary).

Extremes .-- Maximum discharge observed during season, 7,710 second-feet Apr. 7 (gage height, 16.53 feet); minimum not determined.

1936-37, 1942-49: Maximum discharge, 24,500 second-feet Apr. 10, 1947; maximum gage height, 34.00 feet Apr. 17, 1947; minimum observed, 5.4 second-feet Oct. 8, 9, 12-14, 1936.

Remarks .--- Records good. Gage read once daily during high stages.

| Month           | Second<br>Foot Days | Maximum | Minimum | Mean  | Run-off in<br>Acre-Feet |
|-----------------|---------------------|---------|---------|-------|-------------------------|
|                 |                     |         |         |       | L                       |
| October         |                     |         |         |       | I                       |
| November        |                     |         |         |       |                         |
| December        |                     | 1       |         |       |                         |
| January         |                     | ]       |         | *     |                         |
| February        | <b>_</b>            |         |         |       |                         |
| March           |                     |         |         |       |                         |
| April 7-30      | 217,990             | 16,000  | 3,740   | 9,083 | 432,400                 |
| May             | 107,850             | 4,420   | 1,930   | 3,479 | 213,900                 |
| June            | 35.708              | 1.890   | 881     | 1,190 | 70,830                  |
| July            | 17.298              | 846     | 385     | 558   | 34,310                  |
| August          |                     |         |         |       |                         |
| September       |                     |         |         |       | <u> </u>                |
| Water Year 1948 |                     |         |         |       | 751,400                 |

| Month           | Second<br>Foot Days | Maximum | Minimum | Mean     | Run-off in<br>Acre-Feet |
|-----------------|---------------------|---------|---------|----------|-------------------------|
|                 |                     |         |         |          | 1                       |
| October         |                     |         |         |          |                         |
| November        |                     |         | I       |          |                         |
| December        |                     |         |         |          |                         |
| January         |                     |         |         |          |                         |
| February        |                     | 1       |         | <u>.</u> |                         |
| March           |                     |         |         |          |                         |
| April 8-30      | 62.000              | ) 6.890 | 1,640   | 2,696    | 123,000                 |
| May             | 35,980              | 2,190   | 600     | 1,161    | 71,370                  |
| June            | 22,139              | 1.260   | Í 540 Í | 738      | 43,910                  |
| Tuly            | 48.252              | 3.390   | 425     | 1.557    | 95.710                  |
| August          | 22,081              | 1.470   | 304     | 712      | 43,800                  |
| September       | •                   |         |         |          |                         |
| September       |                     |         |         |          |                         |
| Water Year 1949 |                     |         |         |          | 377.800                 |

### RED RIVER OF THE NORTH BASIN Red River of the North at Grand Forks, N. Dak,

Location.—Water-stage recorder, lat. 47°56'26", long. 97°02'47", in SE¼NE¼ sec. 33, T. 152 N., R. 50 W., in Grand Forks, 2 miles downstream from Red Lake River. Datum of gage is 778.42 feet above mean sca level, datum of 1929.

Drainage area.—30,100 square miles (includes 3,940 square miles in closed Devils Lake Basin).

Records available.—May 1901 to September 1949 in reports of the Geological Survey. April 1882 to November 1912 in report of Minnesota State Drainage Commission.

Average discharge.-67 years, 2,215 second-feet.

Extremes.—Maximum discharge during year, 15,200 second-feet Apr. 10; maximum gage height, 29.11 feet Apr. 10; minimum discharge, 365 second-feet Nov. 20 (gage height, 3.02 feet).

1882-1949: Maximum discharge observed, 43,000 second-feet Apr. 10, 1897 (gage height, 50.2 feet), from rating curve extended above 32,000 second-feet; minimum discharge, 2.4 second-feet Feb. 3-5, 12, 14, 16-19, 1937 (caused by unusual regulation during repair of dam at Grand Forks).

Remarks.--Records good except those for period of ice effect, which are fair, and those for period of no gage-height record, which are poor.

| Month              | Second<br>Foot Days | Maximum | Minimum | Mean  | Run-off in<br>Acre-Feet |
|--------------------|---------------------|---------|---------|-------|-------------------------|
| October            | 18,598              | 656     | 553     | 600   | 36.890                  |
| November           | 17.808              | 687     | 382     | 594   | 35.320                  |
| December           | 14.360              | 720     | 380 1   | 463   | 28,480                  |
| January            | 12,930              | 480     | 380     | 417   | 25,650                  |
| February           | 12.430              | 560     | 400     | 444   | 24,650                  |
| March              | 21.060              | 1.000   | 520     | 679   | 41.770                  |
| April              | 203,390             | 15.100  | 1.050   | 6.780 | 403,400                 |
| Мау                | 82,360              | 3.440   | 1.630   | 2.657 | 163.400                 |
| June               | 145.280             | 13.400  | 1.560   | 4.843 | 288.200                 |
| July               | 102.490             | 5.530   | 1.370   | 3.306 | 203,300                 |
| August             | 95.030              | 3.840   | 2,270   | 3,065 | 188.500                 |
| September          | 48,371              | 2,360   | 926     | 1,612 | 95,940                  |
| Water Year 1948-49 | 774,107             | 15,100  | 380     | 2,121 | 1,536,000               |

# RED RIVER OF THE NORTH BASIN

Red River of the North at Oslo, Minn.

Location.—Wire-weight gage, lat. 48°11', long. 97°09', in sec. 31, T. 155 N. R. 50 W., on highway bridge in Oslo. Auxiliary staff gage, lat. 48°13'30", long. 97,°07'10" in SE'48V14 sec. 20, T. 155 N. R. 50 W., 74 miles downstream from Oslo.

Drainage area.-30,500 square miles (includes 3,940 square miles in closed Devils Lake Basin).

**Records available.**—April 1936 to June 1937, April 1941 to September 1949 (fragmentary). Records prior to 1945 do not include flow in bypass channel.

Extremes.---Maximum discharge during season, 18,700 second-feet Apr. 10; maximum gage height, 24.08 feet Apr. 10; minimum discharge not determined.

1936-37, 1941-49: Maximum daily discharge, 41,400 second-feet Apr. 17, 1948; maximum gage height, 31.17 feet Apr. 15, 1948; minimum not determined.

Remarks.—Records good. Gage read once or twice daily during high stages only. For stages above 13 feet, discharge includes flow in bypass channel 1½ miles west of Oslo.

| Month            | Second<br>Foot Days | Maximum | <br>  Minimum | Mean     | Run-off in<br>Acre-Feet |
|------------------|---------------------|---------|---------------|----------|-------------------------|
|                  |                     | 1       |               |          | 1                       |
| October          |                     | 1       |               |          | l                       |
| November         |                     | 1       |               |          |                         |
| December         |                     |         |               |          |                         |
| January          |                     |         |               |          |                         |
| February         |                     | 1       |               |          |                         |
| March            |                     | I       |               |          |                         |
| April 16-30      | 458,400             | 41,400  | 16,200        | 30,560   | 909,200                 |
| May              | 256,630             | 14,400  | 4,170         | 8,278    | 509,000                 |
| June             | 75,250              | 3,970   | 1,790         | 2,508    | 149,300                 |
| August           |                     |         |               |          |                         |
| September        |                     | i       |               |          |                         |
|                  |                     | 1       |               | <u> </u> |                         |
| Water Year 1948. |                     |         |               |          | 1.568.000               |

| Month           | Second<br>Foot Days                   | Maximum | Minimum | Mean  | Run-off in<br>Acre-Feet |
|-----------------|---------------------------------------|---------|---------|-------|-------------------------|
|                 |                                       | }       | l I     |       | 1                       |
| October         |                                       |         |         |       |                         |
| November        |                                       |         |         |       |                         |
| December        |                                       |         | I       |       |                         |
| January         | · · · · · · · · · · · · · · · · · · · |         | I       |       |                         |
| February        |                                       |         |         |       |                         |
| March           |                                       |         |         |       |                         |
| April 9-30      | 198.410                               | 18.600  | 3,690   | 9,019 | 393,500                 |
| May             | 86.520                                | 3,570   | 1,800   | 2,791 | 171,600                 |
| June            | 155.780                               | 14.200  | 1.780   | 5.193 | 309.000                 |
| July            | 105.390                               | 5.720   | 1.480   | 3.400 | 209.000                 |
| August          | 98.460                                | 3.680   | 2.440   | 3,176 | 195.300                 |
| September       |                                       |         |         |       |                         |
| Water Year 1949 |                                       |         |         |       | 1,278,000               |

#### **RED RIVER OF THE NORTH BASIN** Red River at Drayton, North Dakota

Location.--Wire-weight gage, lat. 48°33'40", long. 97°10'30" in NW4/SE4 sec. 26, T. 159 N., R. 51 W. on highway bridge in Drayton. Datum of gage is 756.59 feet above mean sea level, datum of 1929.

Drainage area.—34,800 square miles (includes 3,940 square miles in closed Devils Lake Basin).

Records available.—April 1936 to June 1937, April 1941 to September 1949 (fragmentary).

Extremes.—Maximum discharge during season, 27,900 second-feet Apr. 12; maximum gage height, 31.65 feet Apr. 15; minimum discharge not determined.

1936-37, 1941-49: Maximum daily discharge, 57,000 second-feet Apr. 21, 1948; maximum gage height, 40.05 feet Apr. 22, 1943; minimum discharge not determined. Maximum stage known, about 41 feet in 1897 from marks furnished by local residents.

**Remarks.**—Records good except those for period of no gage-height record, which are fair, and those for period of ice effect, which are poor. Gage read twice daily.

| Month                    | Second<br>Foot Days | Maximum | Minimum | Mean   | Run-off in<br>Acre-Feet |
|--------------------------|---------------------|---------|---------|--------|-------------------------|
| 1                        | _                   | 1       |         |        |                         |
| October                  |                     |         |         |        |                         |
| November                 |                     |         |         |        |                         |
| December                 |                     | i       |         |        |                         |
| January                  |                     |         |         |        |                         |
| February                 |                     | 1       |         |        |                         |
| March                    |                     |         |         |        |                         |
| April 18-30              | 602,600             | 57.000  | 31,200  | 46.350 | 1.195.000               |
|                          |                     |         |         |        | 780.800                 |
| May                      | 393,650             | 28,500  | 4,580   | 12,700 |                         |
| June                     | 92,870              | 4,440   | 2,200   | 3,096  | 184,200                 |
| July                     | 64,090              | 2,870   | 1,560   | 2.067  | 127,100                 |
| August                   |                     | (       |         |        | 1                       |
| September                |                     |         |         |        |                         |
|                          |                     | 1       |         |        | 1                       |
| Apr. 18 to July 31, 1948 |                     |         |         |        | 2.287.000               |

| Month           | Second<br>Foot Days | Maximum | Minimum | Mean   | Run-off in<br>Acre-Feet |
|-----------------|---------------------|---------|---------|--------|-------------------------|
| October         |                     |         |         |        | !                       |
|                 |                     |         |         |        |                         |
| November        |                     |         |         |        |                         |
| December        |                     | 1 ·     |         |        |                         |
| January         |                     |         |         |        |                         |
| February        |                     |         |         |        | !                       |
| March           |                     |         |         |        |                         |
| April           | 343.130             | 27.800  | 1.000   | 11.440 | 680.600                 |
| May             | 92.290              | 4.200   | 1,920   | 2.977  | 183.100                 |
|                 | 166.430             | 13.500  | 1.970   | 5.548  | 330,100                 |
| - 1             |                     |         |         |        |                         |
| July            | 110,090             | 5,540   | 1,670   | 3,551  | 218,400                 |
| August          | 106,880             | 4,010   | 2,700   | 3,448  | 212,000                 |
| September       | 54,600              | 2.600   | 1.100   | 1.820  | 108.300                 |
| i               | <u> </u>            | 1       |         |        | <u></u>                 |
| Water Year 1949 |                     |         |         |        | 1,732,000               |

# STATE OF NORTH DAKOTA

#### RED RIVER OF THE NORTH BASIN Red River of the North at Emerson, Manitoba (International gaging station)

Location.—Chain gage, lat. 49°00'30", long. 97°13'00", on Canadian National Railway bridge in Emerson. Datum of gage is at mean sea level, datum of 1929, by Geodetic Survey of Canada. Prior to Oct. 1, 1948, at datum 0.57 foot higher.

Drainage area.-40,200 square miles (includes 3,940 square miles of closed Devils Basin).

Records available.—March to November 1902 and October 1929 to September 1949 in reports of Geological Survey; May 1912 to September 1949 in reports of the Dominion Water and Power Bureau, Department of Mines and Resources, Canada.

Average discharge .--- 36 years (1913-49) 2,392 second-feet.

Extremes.—Maximum daily discharge during year, 29,200 second-feet Apr. 15; maximum elevation observed 777.49 feet Apr. 16; minimum daily discharge, 409 second-feet Jan. 20; minimum elevation observed, 746.58 feet Oct. 28.

1912-49: Maximum daily discharge, 51,800 second-fect Apr. 27, 1948 (elevation, 787.98 feet, present datum); minimum observed, 0.9 second-feet Feb. 6-8, 1937.

Remarks.—Records good except those for periods of ice effect, which are fair. Gage read once daily.

Cooperation.—This station is one of the international gaging stations maintained by Canada under agreement with the United States.

| Month              | Second<br>Foot Days | Maximum | Minimum | Mean   | Run-off in<br>Acre-Feet |
|--------------------|---------------------|---------|---------|--------|-------------------------|
| October            | 57.810              | 2,160   | 1.700   | 1.860  | 114.700                 |
| November           | 49,600              | 1.930   | 1,150   | 1.650  | 98,380                  |
| December           | 41.720              | 1.540   | 1.150   | 1.350  | 82.750                  |
| January            | 33.616              | 1.250   | 921     | 1.080  | 66.680                  |
| February           | 24,492              | 921     | 801     | 845    | 48.580                  |
| March              | 26,380              | 1.270   | 781     | 851    | 52.320                  |
| April              | 746.610             | 51.800  | 1.410   | 24.900 | 1.481.000               |
| Мау                | 621.610             | 45.100  | 6.320   | 20,100 | 1.233.000               |
| June               | 115,730             | 6.030   | 2.300   | 3,860  | 229.500                 |
| July               | 97.320              | 4.500   | 2.070   | 3.140  | 193.000                 |
| August             | 51.500              | 2,630   | 1.300   | 1.660  | 102.100                 |
| September          | 30,262              | 1,260   | 734     | 1,010  | 60,000                  |
| Water Year 1947-48 | 1,896,650           | 51,800  | 734     | 5,180  | 3,762,000               |

| Month              | Second<br>Foot Days | <br>  Maximum | Minimum | Mean   | Run-off in<br>Acre-Feet |
|--------------------|---------------------|---------------|---------|--------|-------------------------|
| October            | 20.886              | 728           | 633     | 674    | 41.430                  |
| November           | 21.356              | 768           | 648     | 712    | 42.360                  |
| December           | 17.251              | 644           | 486     | 556    | 34,220                  |
| January            | 13.919              | 486           | 409     | 449    | 27.610                  |
| February           | 12,709              | 497           | 417     | 454    | 25.210                  |
| March              | 18,491              | 876           | 497     | 596    | 36.680                  |
| April              | 441,714             | 29.200        | 910     | 14.700 | 876.100                 |
| Мау                | 157,850             | 8,700         | 2.820   | 5.090  | 313,100                 |
| June               | 164 770             | 13,100        | 2.190   | 5.490  | 326.800                 |
| July               | 105,840             | 5,450         | 1.840   | 3.410  | 209.900                 |
| August             | 101,970             | 3,910         | 2,450   | 3.290  | 202,300                 |
| September          | 54,180              | 2,610         | 1,060   | 1,810  | 107.500                 |
| Water Year 1948-49 | 1,130,936           | 29,200        | 409     | 3,100  | 2,243.000               |

### RED RIVER OF THE NORTH BASIN Bois de Sioux River near White Rock, S. Dak.

Location.—Water-stage recorder, lat. 45°51'45", long. 96°34'25", in SW14SW14 sec. 27, T. 128 N., R. 47 W., just downstream from Sig Slough outlet, 300 feet downstream from White Rock dam, 4 miles south of White Rock, and 5 miles northwest of Wheaton, Minn. Datum of gage is 959.89 feet above mean sea level, adjustment of 1912 (levels by Corps of Engineers).

Drainage area.—1,160 square miles.

Records available.-October 1941 to September 1949.

Extremes.—Maximum daily discharge during year, 210 second-feet July 15; minimum gage height, 8.84 feet Mar. 29 (backwater from ice); no flow on many days.

1941-49: Maximum discharge observed, 1,120 second-feet May 24, 1943; maximum gage height, 9.28 feet June 23, 1944; no flow at times in most years.

Remarks.—Records good except for those periods of flow during ice effect. Flow partly regulated by Lake Traverse-Bois de Sioux Flood Control and Water Conservation Project. Available capacity for flood control, 137,000 acre-feet.

| Month              | Second<br>Foot Days | Maximum | <br>  Minimum | Mean | Run-off in<br>Acre-Feet |
|--------------------|---------------------|---------|---------------|------|-------------------------|
|                    |                     |         |               |      | 100                     |
| October            | 96.7                | 5.7     | 1.5           | 3.12 | 192                     |
| November           | 313.9               | 25      | 3.8           | 10.5 | 623                     |
| December           | 137.6               | í 7.0   | 2.0           | 4.44 | 273                     |
| January            | 52.7                | 1       | 1.1           | 1.70 | 105                     |
| February           | 22.7                | 1.2     | .7            | .81  | 45                      |
| March              | 191.1               | 24      | .2            | 6.16 | 379                     |
| April              | 8.144.1             | 875     | 4.9           | 271  | 16.150                  |
|                    | 18,354              | 1 900   | 334           | 592  | 36,400                  |
| May                | 13.001              | 580     |               | 433  | 25,790                  |
| July               | 14.057              | 1 775   | 13            | 453  | 27.880                  |
|                    | 280.2               | 16      | 5.7           | 9.04 | 556                     |
| August             | 179.5               | 9.0     | 4.5           | 5.98 | 356                     |
| September          | 1 (9.9              | 5.0     | 4.0           | 0.00 | 300                     |
| Water Year 1946-47 | 54,830.5            | 900     | .2            | 150  | 108,700                 |

| Month              | Second<br>Foot Days | Maximum | Minimum | Mean | Run-off in<br>Acre-Feet |
|--------------------|---------------------|---------|---------|------|-------------------------|
|                    |                     |         |         | 1    |                         |
| October            | 209.5               | 10      | 4.1     | 6.76 | 416                     |
| November           | 250.8               | 22      | 5.0     | 8.36 | 497                     |
| D 1                | 57.1                | 4.8     | .2      | 1.84 | · 113                   |
| January            | .2                  | .1      | 0 1     | .01  | .4                      |
| T. 1               | 0."                 | ·       | i ŏ i   | 0    | 0                       |
|                    | 1.144.0             | 1 320   | ň       | 36.9 | 2.270                   |
| March              | 10.762.5            | 1.000   | 6.5     | 359  | 21.350                  |
| April              | 23.255              | 1.000   | 90      | 750  | 46,130                  |
| May                |                     |         |         | 84.5 | 5.030                   |
| June               | 2,535.0             | 380     | 7.0     |      |                         |
| July               | 477.5               | 27      | 7.0     | 15.4 | 947                     |
| August             | 563                 | 30      | 14      | 18.2 | 1,120                   |
| September          | 449.9               | 38      | .7      | 15.0 | 892                     |
| Water Year 1947-48 | 39,704.5            | 1.000   | 0       | 108  | 78,770                  |

| Month              | Second<br>Foot Days | Maximum | Minimum | Mean | Run-off in<br>Acre-Feet |
|--------------------|---------------------|---------|---------|------|-------------------------|
|                    |                     |         |         |      |                         |
| October            | 19.3                | 1.1     | 0.2     | 0.62 | 38                      |
| November           | 21.0                | 1.1     | .5      | .70  | 42                      |
| December           | 6.8                 | .5      | 0 1     | .22  | 13                      |
| January            | ••••                |         |         |      |                         |
| February           |                     | i       |         |      |                         |
| March              | 612                 | 65      | i 0 Ì   | 19.7 | 1,210                   |
|                    | 247.9               | 55      | 1.5     | 8.26 | 492                     |
|                    | 62.5                | 7.5     | .9      | 2.02 | 124                     |
|                    | 85.1                | 10      | .5      | 2.84 | 169                     |
|                    | 2.010.8             | 210     | .2      | 64.9 | 3,990                   |
| fuly               | 140.4               | 6.6     | 2.1     | 4.53 | 278                     |
| August             | 45.3                | 4.9     | .2      | 1.51 | 90                      |
| September          | 40.0                | 4.0     | 4       | 1.01 |                         |
| Water year 1948-49 | 3.251.1             | 210     | 0       | 8.91 | 6,450                   |

# RED RIVER OF THE NORTH BASIN Wild Rice River near Mantador, N. Dak.

Location.—Staff gage, lat. 46°10'20", long. 97°00'35", in SE¼ sec. 12, T. 131 N., R. 51 W., 1½ miles west of Mantador. Datum of gage is 997.78 feet above mean sea level, datum of 1929 (Corps of Engineers, bench mark).

Records available .- March 1944 to September 1949.

Extremes.---Maximum discharge during year, 105 second-feet Mar. 28 (gage height, 4.9 feet, affected by ice); no flow during several months.

1944-49: Maximum discharge, 938 second-feet Mar. 20, 1945, (gage height, 9.57 feet); no flow at times in each year.

Remarks.-Records fair except those for periods of ice effect or no gage height record, which are poor. Gage read once daily.

| Month              | Second<br>Foot Days | Maximum | Minimum | Mean | Run-off in<br>Acre-Feet |
|--------------------|---------------------|---------|---------|------|-------------------------|
| October            | 137.7               | 8.1     | 0       | 4.44 | 273                     |
| November           | 116.7               | S.6     | ·       | 3.89 | 273                     |
| December           | 42.9                | 1.9     |         | 1.38 | 351<br>85               |
| January            | 10.0                | 0       | Ň       | 0.00 | 80                      |
| February           | ň                   | Ň       |         |      | 0                       |
| March              | 395                 | 70      | l o i   | 12.7 | 783                     |
| April              | 8.826               | 551     | 50      | 294  |                         |
| May                | 3,473               |         | 26      | 112  | 17,500<br>6,890         |
| June               | 1.506               | 119     | 20      | 50.2 |                         |
| July               | 417.9               | 28      | 2.4     | 13.5 | 2,990<br>829            |
| August             | 6.1                 | 1.6     | á.*     | .20  |                         |
| September          | 0``                 | 0       | ŏ       | 0.20 | 12<br>0                 |
| Water year 1946-47 | 14,921.3            | 551     | 0       | 40.9 | 29,590                  |

| Month              | Second<br>Foot Days | Maximum | <br>  Minimum | Mean | Run-off in<br>Acre-Feet |
|--------------------|---------------------|---------|---------------|------|-------------------------|
| October            | 0                   | 0       | 0             | 0    | 0                       |
| November           | .5                  | 1 × 1   | ő             | .02  | 1.                      |
| December           | 0                   | 0.1     | ň             | 0.02 | 1,                      |
| January            | ő                   | ň       | Ň             | Ň    | U N                     |
| February           | ŏ                   | Ň       | Ň             | ů l  | v                       |
| March              | $15\tilde{5}$       | 50      | ň             | 5.0  | 307                     |
| April              | 1,588               | 140     | 21            | 52.9 | 3.150                   |
| May                | 324.1               | 20      | 1.1           | 10.5 | 643                     |
| June               | 133.3               | Ĩš      |               | 4.44 | 264                     |
| July               | 88.1                | 14      | 0.1           | 2.84 | 175                     |
| August             | 243.5               | 63      | ň i           | 7.85 | 483                     |
| September          | .7                  | .4      | ŏ             | .02  | 400                     |
| Water Year 1947-48 | 2,533.2             | 140     | 0             | 6.92 | 5,020                   |

| Month              | Second<br>Foot Days | Maximum  | Minimum    | Mean              | Run-off ir<br>Acre-Feet |
|--------------------|---------------------|----------|------------|-------------------|-------------------------|
| October            | 5.1                 | 2.7      | 0          | 0.16              | 10                      |
| November           | 44.5                | 3.9      | .2         | 1.48              | 88                      |
| December           | 2.5                 | .5       | o."        | .081              | 5                       |
| January            | ñ                   | ່ທີ່     | Ň          | ^* <sup>v</sup> ° | 5                       |
| February           | ň                   | i ŏ i    | Ň          | X I               | 0                       |
| March              | 668                 | 100      | ň          | 21.5              | 1,320                   |
| April              | 1,234               | 80       | 20 i       | 41.1              | 2.450                   |
| May                | 480.5               | 31       | 4.4        | 15.5              | 2,450                   |
| June               | 163.0               | 9.8      | 1.8        | 5.43              | 323                     |
| wly                | 743.8               | 71       | 1.8        | 24.0              | 1.480                   |
| August             | 184.8               | 39       | <b>1.0</b> | 5.96              | 1,480                   |
| September          | 0                   | <u> </u> | ŏ          | 0                 | 367                     |
| Water Year 1948-49 | 3,526.2             | 100      | 0          | 9.66              | 7,000                   |

### RED RIVER OF THE NORTH BASIN Wild Rice River near Abercrombie, N. Dak.

Location.—Staff gage, lat. 46°28'35", long. 96°47'15", in NE¼SW¼ sec. 25, T. 135 N., R. 49 W., 160 fect upstream from rubble masonry dam which serves as control, 3½ miles northwest of Abercrombie, and 8 miles downstream from Antelope Creek. Datum of gage is 907.94 feet above mean sea level, datum of 1929.

Drainage area.-2,170 square miles.

Records available.—April 1932 to September 1949.

Extremes. Maximum discharge during year, about 650 second-feet Apr. 3 (gage height 5.60 feet, affected by ice); no flow Oct. 1 to Mar. 24, Aug. 27 to Sept. 30.

1932-49: Maximum discharge, 5,500 second-feet Apr. 2, 1943 (gage height, 21.02 feet, from flood mark) from rating table extended above 2,100 second-feet; no flow for some periods each year.

Remarks .--- Records good. Gage read once or twice daily.

| Month              | Second<br>Foot Days | Maximum      | Minimum      | Mean         | Run-off in<br>Acre-Feet                |
|--------------------|---------------------|--------------|--------------|--------------|----------------------------------------|
| October            | 163.4               | 8.3          | .2           | 5.27         | 324                                    |
| November           | 206.8               | 11           | $2.5 \\ 1.2$ | 6.89<br>2.09 | 410<br>129                             |
| December           | $64.8 \\ 29.8$      | 2.7          | 1.2          | .96          | 59                                     |
| ebruary            | 6.8                 | .8           | 0            | .24          | $\begin{array}{c}13\\3.240\end{array}$ |
| March              | $1,636 \\ 21.507$   | 200<br>2.450 |              | 52.8<br>717  | 42,660                                 |
| April              | 4,911               | 388          | 47           | 158          | 9,740                                  |
| une                | 2,236               | 154<br>53    | 32<br>5.2    | 74.5<br>22.1 | 4,440<br>1.360                         |
| uly                | 683.7<br>18.8       | 1 4.4        | 0            | .61          | 37                                     |
| September          | 0                   | 0            | 0            | 0            | 0                                      |
| Water Year 1946-47 | 31,464.1            | 2,450        | 0            | 86.2         | 62,410                                 |

| Month              | Second<br>Foot Days                                                                                         | Maximum                                                      | Minimum                                              | Mean                                                                                                     | Run-off in<br>Acre-Feet                                                                          |
|--------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| October            | $\begin{matrix} 0 \\ 0 \\ 0 \\ 0 \\ 117.1 \\ 6,515 \\ 608.8 \\ 188.8 \\ 172.9 \\ 222.1 \\ 1.8 \end{matrix}$ | 0<br>0<br>0<br>64<br>680<br>44<br>28<br>20<br>44<br>44<br>.8 | 0<br>0<br>0<br>0<br>47<br>3.9<br>1.1<br>0<br>.3<br>0 | $\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 3.78 \\ 217 \\ 19.6 \\ 6.29 \\ 5.58 \\ 7.16 \\ .06 \\ \end{array}$ | $\begin{array}{c} 0 \\ 0 \\ 0 \\ 232 \\ 12,920 \\ 1,210 \\ 374 \\ 343 \\ 441 \\ 3.6 \end{array}$ |
| Water Year 1947-48 | 7,826.5                                                                                                     | 680                                                          | 0                                                    | 21.4                                                                                                     | 15,520                                                                                           |

| Month                                                                                             | Second<br>Foot Days                                                                                | Maximum                                                                                          | Minimum                                               | Mean                                                            | Run-off in<br>Acre-Feet                                                                           |
|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| October<br>November<br>January<br>February<br>April<br>March<br>June<br>July<br>July<br>September | $\begin{array}{c} 0\\ 0\\ 0\\ 0\\ 1,011\\ 4,509\\ 7.74.5\\ 214.0\\ 2.945.9\\ 411.9\\ 0\end{array}$ | $ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 350 \\ 600 \\ 50 \\ 20 \\ 491 \\ 44 \\ 0 \\ \end{array} $ | 0<br>0<br>0<br>0<br>38<br>7.4<br>4.6<br>3.6<br>0<br>0 | 0<br>0<br>0<br>32.6<br>150<br>25.0<br>7.13<br>95.0<br>13.3<br>0 | $\begin{array}{c} 0 \\ 0 \\ 0 \\ 2,010 \\ 8,940 \\ 1,540 \\ 424 \\ 5,847 \\ 817 \\ 0 \end{array}$ |
| Water Year 1948-49                                                                                | 9,866.3                                                                                            | 600                                                                                              | 0                                                     | 27.0                                                            | 19,570                                                                                            |

### RED RIVER OF THE NORTH BASIN Antelope Creek at Dwight, N. Dak.

Location.—Chain gage, lat. 46°18'50", long. 96°44'05", in SE¼SE¼ sec. 20, T. 133 N., R. 48 W., at bridge on U. S. Highway 81, half a mile north of Dwight and 7 miles upstream from mouth.

Drainage area.-About 250 square miles.

Records available .--- March 1944 to September 1949 (discontinued).

Extremes.—Maximum discharge during year, 270 second-feet Mar. 31; maximum gage height, 6.3 feet July 8 (backwater from weeds); no flow in several months.

1944-49: Maximum discharge, 1,360 second-feet Mar. 21, 1946 (gage height, 12.33 feet); no flow for several months in each year.

Remarks .--- Records fair. Gage read once daily.

| Month              | Second<br>Foot Days | Maximum | Minimum | Mean | Run-off in<br>Acre-Feet |
|--------------------|---------------------|---------|---------|------|-------------------------|
| October            | 0                   |         | 0       | 0    | 0                       |
| November           | Ŏ                   | i ŏ i   | ň       | ň    | ň                       |
| December           | Ŏ                   | Ŏ       | ŏÌ      | ň    | ň                       |
| January            | Ō                   | ÍŎ      | ŏ       | ŏ    | ŏ                       |
| February           | Ō                   | ŏ       | ă i     | ŏİ   | ň                       |
| March              | 1,268               | 200     | ŏ       | 40.9 | 2,52Ŏ                   |
| April              | 6.055.3             | 1.100   | 3.8     | 202  | 12.010                  |
| Мау                | 37.4                | 4.4     | .2      | 1.21 | 74                      |
| June               | 126.8               | 24      | .2      | 4.23 | 252                     |
| July               | 11.2                | 1.3     | 0       | .36  | 22                      |
| August             | 0                   | 0       | Ō       | 0    | -0                      |
| September          | 0                   | Ō       | Ŏ       | Ŏ    | Ŏ                       |
| Water Year 1946-47 | 7,498.7             | 1,100   | 0       | 20.5 | 14,880                  |

| Month              | Second<br>Foot Days | Maximum      | Minimum | Mean | Run-off in<br>Acre-Feet |
|--------------------|---------------------|--------------|---------|------|-------------------------|
| October            | 0                   | 0            |         | 0    | 0                       |
| November           | ŏ                   | l ŏ l        | ŏ       | ň    | ň                       |
| December           | ŏ                   | i ŏ i        | ŏ       | ň    | ň                       |
| January            | ŏ                   | i ŏ l        | ŏi      | ŏ    | ň                       |
| February           | Ō                   | i õ l        | ŏ       | ň    | ň                       |
| March              | 3                   |              | ŏ       | .10  | Ğ.                      |
| April              | 960.6               | 100          | 3 I     | 32.0 | 1,910                   |
| May                | 14.6                | 2.2          | ŏ       | .47  | 29                      |
| June               | 0                   | i <u>ō</u> i | ŏl      | 0    | <b>ี</b> ถึ             |
| July               | ŏ                   | l ŏ l        | ŏł      | ň    | ň                       |
| August             | ŏ                   | i ŏ l        | ŏ       | ŏ    | ŏ                       |
| September          | Ŏ                   | ŏ            | ŏ       | ŏ    | ŏ                       |
| Water Year 1947-48 | 978.2               | 100          | 0       | 2.67 | 1,940                   |

| Month              | Second<br>Foot Days | Maximum | Minimum | Mean | Run-off in<br>Acre-Feet |
|--------------------|---------------------|---------|---------|------|-------------------------|
| October            | 0                   | 0       | 0       | 0    | 0                       |
| November           | Ō                   | ÍŌ      | Ō       | ŏ    | ň                       |
| December           | Ō                   | i ō     | i õ l   | ŏ    | ň                       |
| January            | Ó                   | Ō       | l õ l   | ŏ    | ŏ                       |
| February           | 0                   | ÍÓ      | i ŏ i   | ŏ    | ň                       |
| March              | 524                 | 250     | l õ i   | 16.9 | 1,04Ŏ                   |
| April              | 704.1               | 200     | .2      | 23.5 | 1,400                   |
| May                | 3.2                 | .2      | 0       | .10  | 6.                      |
| June               | 0.4                 | 1 .1    | ŏ       | .01  | •••                     |
| July               | 776.0               | 211     | Ŏ       | 25.0 | 1,540                   |
| August             | 41.3                | 1 11    | i õi    | 1.33 | 82                      |
| September          | 0                   | 0       | Ö       | 0    | <u>0</u>                |
| Water year 1948-49 | 2,049.0             | 250     | 0       | 5.61 | 4.070                   |

# RED RIVER OF THE NORTH BASIN Sheyenne River near Harvey, N. Dak.

Location.-Staff gage and loose rock dam, lat. 47°47'25", long. 99°53'25", in SE½SW¼ sec. 21, T. 150 N., R. 72 W., 300 feet north of Harvey Water Works and 2¼ miles northeast of Harvey.

Records available.—October 1945 to September 1949.

Extremes.--Maximum discharge during year, 846 second-feet Apr. 7 (gage height, 6.20 feet); no flow during several months.

1945-49: Maximum discharge observed, 1,220 second-feet Apr. 18, 1948 (gage height, 6.45 feet); no flow during several months in each year.

Remarks.-Records fair except those for the period of ice effect, which are poor. Gage read once daily.

| Month              | Second<br>Foot Days                                                                                          | Maximum                                                                                        | Minimum                                            | Mean                                                                                              | Run-off in<br>Acre-Feet                                                |
|--------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| October            | $\begin{matrix} 0 \\ 1.4 \\ 1.0 \\ 0 \\ 740 \\ 467.7 \\ 119.7 \\ 213.5 \\ 211.1 \\ 11.2 \\ 5.0 \end{matrix}$ | $\begin{array}{c} 0 \\ .1 \\ .1 \\ 0 \\ 150 \\ 40 \\ 8.4 \\ 22 \\ 40 \\ 1.0 \\ .8 \end{array}$ | 0<br>0<br>0<br>0<br>3.9<br>7<br>.7<br>.4<br>5<br>0 | $\begin{array}{c} 0\\ .05\\ .03\\ 0\\ 23.9\\ 15.6\\ 3.86\\ 7.12\\ 6.81\\ .36\\ .17\\ \end{array}$ | 0<br>2.8<br>2.0<br>0<br>1,470<br>928<br>237<br>423<br>419<br>22<br>9.9 |
| Water Year 1946-47 | 1,770.6                                                                                                      | 150                                                                                            | 0                                                  | 4.85                                                                                              | 3,510                                                                  |

| Month              | Second<br>Foot Days | Maximum  | <br>  Minimum | Mean          | Run-off in<br>Acre-Feet |
|--------------------|---------------------|----------|---------------|---------------|-------------------------|
|                    |                     |          |               |               |                         |
| October            | 17.9                | 1.6      | .1            | .58           | 36                      |
| November           | 20,3                | 1.4      | .2            | .68           | 40<br>38                |
| December           | 19.2                | 1.0      | .4            | .62           | 38                      |
| January            | 3.5                 | .4       | 0             | ,.11          | 6.9                     |
| February           | 0                   | 0        | 0             | v             | 9.9                     |
| March              | 5                   | 2        | 0             | .2            | 12,500                  |
| April              | 6,304               | 952      | 3             | 210  <br>29.3 | 1,800                   |
| May                | 907.2               | 89       | 2.1           | 3.24          | 193                     |
| June               | 97.2                | 15       | .6            | 1.19          | 73                      |
| July               | 36.9                | 4.0      |               | .24           | 15                      |
| August             | 7.4                 | 0.1      |               | 0.11          | ĩŏ                      |
| September          |                     | <u> </u> |               |               |                         |
| Water Year 1947-48 | 7,418.6             | 952      | 0             | 20.3          | 14,710                  |

| Month              | Second<br>Foot Days                                                                    | Maximum                                                                          | Minimum                                  | Mean                                                                                     | Run-off in<br>Acre-Feet                            |
|--------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------|
| October            | $\begin{array}{c} 0\\ 0\\ 0\\ 9\\ 4,941\\ 238.7\\ 205.0\\ 35.7\\ 0\\ 0\\ 0\end{array}$ | $ \begin{array}{c} 0 \\ 0 \\ 0 \\ 547 \\ 24 \\ 31 \\ 5.2 \\ 0 \\ 0 \end{array} $ | 0<br>0<br>0<br>13<br>1.4<br>.5<br>0<br>0 | $\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 165 \\ 7.70 \\ 6.83 \\ 1.15 \\ 0 \\ 0 \end{array}$ | 0<br>0<br>0<br>9,800<br>473<br>407<br>71<br>0<br>0 |
| Water Year 1948-49 | 5,429.4                                                                                | 547                                                                              | 0                                        | 14.9                                                                                     | 10,770                                             |

### **RED RIVER OF THE NORTH BASIN** Sheyenne River at Sheyenne, N. Dak.

Location.—Staff gage, lat. 47°50'20", long. 99°07'30", in NE¼ sec. 5, T. 150 N., R. 66 W., at recreation-pond dam, 1 mile north of Sheyenne. Datum of gage is 1,408.65 feet above mean sea level, adjustment of 1912.

Drainage area.—1,980 square miles.

Records available.—April 1929 to June 1933, October 1939 to September 1949. Average discharge.—11 years (1929-30, 1939-49), 36.5 second-fect.

Extremes.---Maximum discharge during year, 2,080 second-feet Apr. 9 (gage height, 7.15 feet); no flow at times.

1929-33, 1939-49: Maximum discharge, 3,840 second-feet Apr. 18, 19, 1948 (gage-height, 8.51 feet); no flow during parts of most years.

**Remarks.**—Records fair above 50 second-feet and poor below. Gage read once daily. Stage-discharge relation substantially affected by wind at times.

|      | econd<br>ot Days | Maximum | Minimum | Mean | Run-off in<br>Acre-Feet |
|------|------------------|---------|---------|------|-------------------------|
| er   | 34.9             | 6.6     | 0       | 1.13 | 69                      |
| nber | 60.4             | 2.4     | 1.7     | 2.01 | 120                     |
| nber | 28.2             | 1.7     | .1      | .91  | 56                      |
| ary  | 1.0              | i .i    | 0       | .03  | ž                       |
| Bry  | ō                | 0       | Ō       | 0    | õ                       |
| h    | 3.881            | 600     | Ō       | 125  | 7.700                   |
|      | 2.934            | 215     | 27      | 97.8 | 5.820                   |
|      | 462.0            | 36      | 1.4     | 14.9 | 916                     |
|      | 277.1            | 48      | 1.2     | 9.24 | 550                     |
|      | 617.6            | 36      | 6.6     | 19.9 | 1,220                   |
| st   | 163.5            | 18      | 0 I     | 5.27 | 324                     |
| mber | 4.5              | 1.2     | Ō       | .15  | 8                       |
|      |                  |         | 0       |      |                         |

| Month              | Second<br>Foot Days | <br>  Maximum | Minimum | Mean  | Run-off in<br>Acre-Feet |
|--------------------|---------------------|---------------|---------|-------|-------------------------|
| October            | 9.1                 | 1.7           |         | .29   | 18                      |
|                    | 12.5                |               |         |       |                         |
| November           |                     | 1.7           |         | .42   | 25                      |
| December           | 6.2                 | .2            | .2      | .20   | 12                      |
| January            | 3.7                 | .2            | .1      | .12   | 7                       |
| February           | 2.9                 | 1.1           | .1      | .10   | 5                       |
| March              | 6.6                 | 2             | .1      | .21   | 13                      |
| April              | 32.038              | 3,840         | 2       | 1.068 | 63.550                  |
| May                | 3.809               | 448           | 25      | 123   | 7.560                   |
| June               | 412.3               | 39            | 5.1     | 13.7  | 818                     |
| July               | 276.9               | 18            | 1.7     | 8.93  | 549                     |
| August             | 20.3                | 1.7           | Ō       | .65   | 40                      |
| September          | 0                   | 0             | 0       | 0     |                         |
| Water Year 1947-48 | 36,597,5            | 3,840         | 0       | 100   | 72,600                  |

| Month              | Second<br>Foot Days | Maximum | Minimum | Mean | Run-off in<br>Acre-Feet |
|--------------------|---------------------|---------|---------|------|-------------------------|
| October            | 0                   | 1       | 0       | 0    | 0                       |
| November           | 4.7                 | .7      | l ŏ l   | .16  | 9.                      |
| December           | 5.6                 | .5      | .1      | .18  | 11                      |
| January            | 1.5                 | .1      | 0       | .051 | -3.                     |
| February           | 0                   | 0       | Ó Í     | 0    | Õ                       |
| March              | 26                  | 20      | Ó       | .84  | 52                      |
| April              | 20,334              | 2.030   | 30 1    | 678  | 40.330                  |
| Мау                | 1,139               | 72      | 12      | 36.7 | 2.260                   |
| June               | 604.5               | 34      | 1.7     | 20.2 | 1,200                   |
| July               | 250.4               | 24      | 0       | 8.08 | 497                     |
| August             | 0                   | 0       | 0       | 0    | Ó                       |
| September          | 0                   | 0       | 0       | 0    | Ó                       |
| Water Year 1948-49 | 22,365.7            | 2.030   | 0       | 61.3 | 44.360                  |

137

#### RED RIVER OF THE NORTH BASIN Sheyenne River near Cooperstown, N. Dak.

Location.--Wire-weight gage, lat. 47°26', long. 98°02', in NE¼SE¼ sec. 27, T. 146 N., R. 58 W., at county bridge 5 miles east of Cooperstown. Datum of gage is 1,274.57 feet above mean sea level, datum of 1929 (Corps of Engineers, bench mark).

Records available.---March 1945 to September 1949.

Extremes.—Maximum discharge during year, 2,290 second-feet Apr. 17 (gage height, 15.95 feet); minimum discharge observed, 1.6 second-feet Oct. 3 (gage height, 3.53 feet).

1945-49: Maximum discharge, 5,600 second-feet Apr. 23, 1948; minimum daily discharge, 1 second-foot Mar. 1-9, 1947; minimum gage height observed, 3.52 feet Sept. 6, 1945 and Sept. 27, 1948.

Remarks .- Records good except those for period of ice effect, which are fair.

| Month              | Second<br>Foot Days | Maximum     | Minimum | Mean  | Run-off in<br>Acre-Feet |
|--------------------|---------------------|-------------|---------|-------|-------------------------|
|                    |                     | 1           | 1       |       |                         |
| ł                  | 578.8               | 37          | 2.2     | 18.7  | 1,150                   |
| October            |                     |             |         | 15.6  | 926                     |
| November           | 467                 | 27          |         |       |                         |
| December           | 375                 | 14          | 10      | 12.1  | 744                     |
| anuary             | 330                 | 15          | 5 1     | 10.6  | 655                     |
|                    | 157                 | i î         | i à i   | 5.4   | 311                     |
| February           |                     | 1 10        | ē       | 6.8   | 417                     |
| March              | 210                 | 12          |         |       |                         |
| April              | 53,408              | 5,130       | 8       | 1,780 | 105,900                 |
|                    | 19,178              | 2,170       | 114     | 619   | 38,040                  |
|                    | 2.080               | 124         | 44      | 69.3  | 4.130                   |
| June               |                     |             | 27      | 46.8  | 2.880                   |
| July               | 1,451               | 86          |         |       |                         |
| August             | 824.4               | 66          | 7.3     | 26.6  | 1,640                   |
| September          | 82.7                | 7.0         | 1.3     | 2.76  | 164                     |
| September          |                     | · · · · · · |         | 1     |                         |
| Water Year 1947-48 | 79.141.9            | 5.130       | 1.3     | 216   | 157,000                 |

| Month              | Second<br>Foot Days | Maximum | Minimum | Mean   | Run-off in<br>Acre-Feet |
|--------------------|---------------------|---------|---------|--------|-------------------------|
|                    |                     |         |         |        |                         |
| October            | 194.0               | 13      | 1.6     | 6.26   | 385                     |
| · · · · ·          | 469                 | 19      | 12      | 15.6 l | 930                     |
|                    | 354                 | 14      | 9       | 11.4   | 702                     |
| December           | 174                 | 8       | 4       | 5.6    | 345                     |
| January            | 130                 | 6       | 4       | 4.6    | 258                     |
| February           | 688                 | 250     |         | 22.2   | 1,360                   |
| March              |                     |         | 300 1   | 1.142  | 67.980                  |
| April              | 34,271              | 2,280   |         |        | 8.630                   |
| May                | 4,351               | 282     | 74      | 140    |                         |
| June               | 2,222               | 306     | 36      | 74.1   | 4,410                   |
| July               | 1,728               | 96      | 29      | 55.7   | 3,430                   |
| August             | 761.7               | İ 87    | 3.6     | 24.6   | 1,510                   |
| September          | 85.5                | 5.0     | 2.0     | 2.85   | 170                     |
|                    |                     |         |         |        |                         |
| Water Year 1948-49 | 45,428.2            | 2,280   | 1.6     | 124    | 90,110                  |

### RED RIVER OF THE NORTH BASIN Sheyenne River at Valley City, N. Dak.

Location.---Water-stage recorder and concrete control, lat. 46°54′50″, long. 98° 00'30″, SE¥ANW¼ sec. 28, T. 140 N., R. 58 W., 100 fect downstream from College Dam in Valley City and 15 miles downstream from Baldhill Creek.

Drainage area.---8,360 square miles (includes 3,940 square miles in closed Devils Lake Basin).

Records available.---March to August 1919. March 1938 to September 1949.

Extremes.—Maximum discharge during year, 2,120 second-fect Apr. 21 (gage height, 10,90 feet); minimum, 0.2 second-foot on many days; minimum gage height, 2.38 feet Sept. 29.

1919, 1938-49: Maximum discharge, 4,580 second-feet Apr. 28, 1948 (gage height, 17.51 feet); no flow during several periods in 1938-41.

Remarks .--- Records good except those for period of no gage-height record, which are poor. Regulation by Baldhill Reservoir and other smaller reservoirs. Storage in Baldhill Reservoir began in August 1949.

| Month              | Second<br>Foot Days | Maximum | Minimum | Mean  | Run-off ir<br>Acre-Feet |
|--------------------|---------------------|---------|---------|-------|-------------------------|
| October            | 741.5               | 62      | 2.0     | 23.9  | 1,470                   |
| November           | 462.4               | 49      |         | 15.4  |                         |
| December           | 460.6               | 33      | .6      | 14.9  | 914                     |
| January            | 253.9               | 12      | 4.9     | 8.19  | 504                     |
| February           | 144.4               | 7.5     | 3.7     | 4.98  | 286                     |
| March              | 990.5               | 176     | 5.7     | 32.0  | 1,960                   |
| April              | 62.306              | 4.490   | 129     | 2.077 | 123.600                 |
| May                | 29.753              | 3.270   | 155     | 960   | 59.010                  |
| June               | 2.946               | 146     | 68      | 98.2  | 5.840                   |
| July               | 1.690               | 88      | 38      | 54.5  | 3.350                   |
| August             | 1.256               | 72      | 1 19    | 40.5  | 2,490                   |
| September          | 313.9               | 18      | 1.3     | 10.5  | 623                     |
| Water Year 1947-48 | 101,318.2           | 4,490   | .6      | 277   | 201,000                 |

| Month     | Second<br>Foot Days | Maximum | Minimum | Mean_ | Run-off ir<br>Acre-Feet |
|-----------|---------------------|---------|---------|-------|-------------------------|
| October   | 24.5                | 1.4     | 0.4     | 0.79  | 49                      |
| November  | 783.9               | 66      |         | 26.1  | 1,55Ö                   |
| December  | 335.5               | 4.9     | .2      | 10.8  | 665                     |
| January   | 193.6               | 12      | .2      | 6.25  | 384                     |
| February  | 201.5               | 8.0     | 6 í     | 7.20  | 400                     |
| March     | 2.500.9             | 488     | 4.6     | 80.7  | 4,960                   |
| April     | 37.606              | 2,110   | 467 1   | 1.254 | 74,590                  |
| May       | 5,838               | 433     | 88      | 188   | 11.580                  |
| June      | 3,102               | 302     | 40      | 103   | 6.150                   |
| fulv      | 3.114               | 449     | 22      | 100   | 6,180                   |
| August    | 94.0                | 22      | .3      | 3.03  | 186                     |
| September | 36.9                | 7.0     | .2      | 1.25  | 73                      |

### RED RIVER OF THE NORTH BASIN Sheyenne River at West Fargo, N. Dak.

Location.—Water-stage recorder, lat. 46°53'20", long. 96°54'55", in sec. 31., T. 140 N., R. 49 W., one mile north of West Fargo and 3 miles upstream from Maple River. Datum of gage is 877.19 feet above mean sea level, datum of 1929.

Drainage area.—9,460 square miles (includes 3,940 square miles in closed Devils Lake Basin).

Records available.—September 1929 to September 1949. March 1902 to June 1907 and March to August 1919 at site a quarter of a mile upstream.

Average discharge .-- 20 years, 128 second-feet.

Extremes.—Maximum discharge during ycar, 1,980 second-feet Apr. 29 (gage height, 16.19 feet); minimum, 5.7 second-feet Aug. 20 (gage height 2.48 feet).

1902-07, 1919, 1929-49: Maximum discharge, 2,800 second-fect Apr. 18, 1947 (gage height, 20.53 feet); minimum, 2.0 second-feet Dec. 14, 1936 (gage height, 1.90 feet).

Remarks.—Records good except those for period of ice effect, which are fair. Flow regulated by Baldhill Reservoir after August 1949.

| Month              | Second<br>Foot Days | Maximum | Minimum | Mean   | Run-off in<br>Acre-Feet |
|--------------------|---------------------|---------|---------|--------|-------------------------|
| October            | 2.371               | 107     | 54      | 76.5   | 4.700                   |
| November           | 1.746               | 73      | 44      | 58.2   | 3,460                   |
| December           | 1,293               | 48      | 37      | 41.7   | 2,560                   |
| January            | 1,179               | 40      | 35      | 38.0 i | 2.340                   |
| February           | 1,130               | 50      | 32      | 40.4   | 2,240                   |
| March              | 2,218               | 280     | 34 1    | 71.5   | 4,400                   |
| April              | 38,294              | 2.800   | 422     | 1.276  | 75,960                  |
| May                | 7,394               | 405     | 157     | 239    | 14.670                  |
| June               | 6.936               | 400     | 139     | 231    | 13.760                  |
| July               | 3.538               | 159     | 72      | 114    | 7.020                   |
| August             | 1,793               | 70      | 50      | 57.8   | 3,560                   |
| September          | 966                 | 49      | 24      | 32.2   | 1,920                   |
| Water_year 1946-47 | 68,858              | 2,800   | 24      | 189    | 136,600                 |

| Month              | Second<br>Foot Days | Maximum | Minimum | Mean  | Run-off in<br>Acre-Feet |
|--------------------|---------------------|---------|---------|-------|-------------------------|
| October            | 1.058               | 82      | 22      | 34.1  | 2,100                   |
| November           | 1.944               | 89      | 32      | 64.8  | 3,860                   |
| December           | 1.473               | 64      | 33      | 47.5  | 2,920                   |
| January            | 1.000               | 42      | 30      | 32.3  | 1.980                   |
| February           | 870                 | 30      | 30      | 30.0  | 1.730                   |
| March              | 1.228               | 110     | 30      | 39.6  | 2.440                   |
| April              | 43,500              | 2,320   | 150     | 1.450 | 86.280                  |
| May                | 50.475              | 2.620   | 437     | 1.628 | 100.100                 |
| June               | 8.166               | 409     | 190     | 272   | 16.200                  |
| July               | 4.646               | 188     | 123     | 150   | 9,220                   |
| August             | 3,206               | 127     | 76      | 103   | 6,360                   |
| September          | 1,634               | 86      | 40      | 54.5  | 3,240                   |
| Water Year 1947-48 | 119,201             | 2,620   | 22      | 326   | 236,400                 |

| Month              | Second<br>Foot Days | Maximum | Minimum | Mean  | Run-off in<br>Acre-Feet |
|--------------------|---------------------|---------|---------|-------|-------------------------|
| October            | 1.068               | 39      | 32      | 34.5  | 2.120                   |
| November           | 1.574               | 79      | 37      | 52.5  | 3,120                   |
| December           | 1.207               | 60      | 30      | 38.9  | 2,390                   |
| January            | 866                 | 40      | 25      | 27.9  | 1,720                   |
| February           | 625                 | 25      | 20      | 22.3  | 1.240                   |
| March              | 3,680               | 350     | i 30 i  | 119   | 7.300                   |
| April              | 34,720              | 1,970   | 180     | 1.157 | 68.870                  |
| Мау                | 16,091              | 1,740   | 204     | 519   | 31.920                  |
| June               | 5,819               | 293     | 125     | 194   | 11.540                  |
| July               | 4,295               | 251     | 8,9     | 139   | 8,520                   |
| August             | 2,653               | 336     | 22      | 85.6  | 5,260                   |
| September          | 818                 | 61      | 19      | 27.3  | 1,620                   |
| Water Year 1948-49 | 73,416              | 1,970   | 19      | 201   | 145,600                 |

# RED RIVER OF THE NORTH BASIN

Maple River at Mapleton, N. Dak.

Location.—Wire-weight gage and loose rock dam, lat. 46°53'20", long. 97°03'20", in NE¼ NE¼ sec. 1, T. 139 N., R. 51 W., in Mapleton, 10.5 miles upstream from mouth. Datum of gage is 886.67 feet above mean sea level, datum of 1929 (Corps of Engineers bench mark).

Drainage area.—1,480 square miles.

Records available .- April 1944 to September 1949.

Extremes.----Maximum discharge during year, 850 second-feet Apr. 3 (gage height, 14.75 feet, affected by ice); no flow at times.

1944-49: Maximum discharge, 3,880 second-feet Apr. 14, 1947 (gage height, 18.11 feet); no flow at times in most years.

Remarks.—Records good above 10 second-feet and fair below except those for periods of ice effect or doubtful or no gage-height record, which are poor. Gage read twice daily.

|           | Foot Days | Maximum | Minimum | Mean | Acre-Feet |
|-----------|-----------|---------|---------|------|-----------|
| October   | 184.8     | 8.4     | 1.9     | 5.96 | 367       |
| November  | 164.4     | 6.9     | 2.7     | 5.48 | 326       |
| December  | 39.7      | 3.1     | .4      | 1.28 | 79        |
| January   | 4.0       | .3      | 0 '     | .13  | 7         |
| February  | 0         | i 0     | 0       | 0    | 0         |
| March     | 3.121     | 470     | 0       | 101  | 6,190     |
| April     | 28.368    | 3.820   | 80      | 946  | 56,270    |
| May       | 1,837     | 136     | 25      | 59.3 | 3,640     |
| June      | 10.596    | 2,290   | 19      | 353  | 21,020    |
| July      | 556.0     | 58      | 3.8     | 17.9 | 1,100     |
| August    | 31.6      | 3.4     | .2      | 1.02 | 63        |
| September | 121.2     | 16      | .1      | 4.04 | 240       |

| Month              | Second<br>Foot Days | Maximum  | Minimum | Mean | Run-off in<br>Acre-Feet |
|--------------------|---------------------|----------|---------|------|-------------------------|
| October            | 73.8                | 6.9      | .5      | 2.38 | 146                     |
| November           | 194.3               | 6.9      | 6.0     | 6.48 | 385                     |
|                    | 173.8               | 6.9      | 5       | 5.61 | 345                     |
|                    |                     | 0.5      | 1       | 2.6  | 159                     |
| January            | 80                  | <b>4</b> | 1       |      |                         |
| February           | 9.4                 | .8       | .2      | .32  | 19                      |
| March              | 196.2               | 60       | .2      | 6.33 | 389                     |
| April              | 15.526              | 1.460    | 60      | 518  | 30,800                  |
| May                | 1.591               | 104      | 15 I    | 51.3 | 3,160                   |
| June               | 584                 | 28       | 13      | 19.5 | 1,160                   |
| July               | 428                 | 1 18     | 12      | 13.8 | 849                     |
| August             | 283.4               | 13       | 4.4     | 9.14 | 56                      |
| September          | 46.6                | 4        | .2      | 1.55 | 9                       |
| Water Year 1947-48 | 19,186.5            | 1,460    | .2      | 52.4 | 38,07                   |

| Month           | Second<br>Foot Days | Maximum | Minimum | Mean | Run-off in<br>Acre-Feet |
|-----------------|---------------------|---------|---------|------|-------------------------|
|                 |                     |         |         |      | 4.0                     |
| October         | 21.5                | 2.6     | 0.1     | 0.69 | 43                      |
| November        | 185.9               | 9.4     | 3.2     | 6.20 | 369                     |
| December        | 54.4                | 1 4     | .1      | 1.75 | 108                     |
| January         | 1.3                 | 1.1     |         | .04  | 2.                      |
| February        | 0                   | 0       | 0       | 0    | 0                       |
| March           | 277.8               | 1 80    | 0       | 8.96 | 551                     |
| April           | 6.272               | 800     | 21      | 209  | 12,440                  |
| May             | 477.6               | 30      | 4.8     | 15.4 | 947                     |
| June            | 242.1               | 1 14    | 4       | 8.07 | 480                     |
| July            | 225                 | 12      | 1 2     | 7.26 | 446                     |
| August          | 7.1                 | 1       | ] 0 ]   | .23  | 14                      |
| September       | 0                   | 0       | 0       | 0    | 0                       |
|                 |                     |         |         |      |                         |
| Water year 1949 | 7,764.7             | 800     | 0       | 21.3 | 15,400                  |

### RED RIVER OF THE NORTH BASIN Rush River at Amenia, N. Dak.

Location.—Wire-weight gage, lat. 47°00'40", long. 97°13'10", on line between sec. 23 and 24, T. 141 N., R. 52 W., on bridge on State Highway 18, 0.4 mile north of Amenia. Prior to Sept. 7, 1947, staff gage 150 feet downstream, at same datum.

Records available.-July 1946 to September 1949.

Extremes.—Maximum discharge during year, 400 second-feet Mar. 31; maximum gage height observed, 9.63 feet Mar. 29 (affected by ice): no flow during several months.

1946-49: Maximum discharge, 1,230 second-feet Apr. 14, 1947; maximum gage height, 10.20 feet, Apr. 8, 1948 (affected by ice); no flow for some periods in each year.

Remarks .--- Records good except those for period of ice effect, which are fair.

| Month              | Second<br>Foot Days | Maximum | Minimum | Mean | Run-off in<br>Acre-Feet |
|--------------------|---------------------|---------|---------|------|-------------------------|
| October            | 9.4                 | 0.9     | 0       | 0.30 | 19                      |
| November           | 25.4                | 1.9     | .3      | .85  | 50                      |
| December           | 5.2                 | .3      | 0       | .17  | ĩõ                      |
| January            | 0                   | 0       | ŏ       | 0    | ĨŇ                      |
| February           | Ŏ                   | Ň       | ŏ       | ŏ    | ŏ                       |
| March              | 952                 | 167     | ŏi      | 30.7 | 1,890                   |
| April              | 5.233               | 1,180   | 14      | 174  | 10.380                  |
| May                | 242.8               | 13      | 4.8     | 7.83 | 482                     |
| June               | 1,162.5             | 291     | 6       | 38.8 | 2.310                   |
| July               | 47.5                | 5.5     | .1      | 1.53 | 94                      |
| August             | 0                   | 0       | 0       | 0 j  | 0                       |
| September          | 0                   | 0       | 0       | 0    | 0                       |
| Water Year 1946-47 | 7,677.8             | 1 1 2 0 |         | 01.0 | 15.040                  |
| water icar 1940-47 | 7,677.8             | 1,180   | 0 }     | 21.0 | 15,240                  |

| Month              | Second<br>Foot Days | Maximum | Minimum | Mean | Run-off in<br>Acre-Feet |
|--------------------|---------------------|---------|---------|------|-------------------------|
| October            | 1.1                 | 0.1     | 0       | 0.04 | 2.2                     |
| November           | 3.0                 | .1      | .1      | .10  | สี ดี                   |
| Dccember           | 4.0                 | 1       | l .ī l  | .13  | 6.0<br>7.9              |
| January            | 3.1                 | .1      | .1      | .10  | 6.1                     |
| February           | ō.                  | 0       | 0       | 0    | Ő.                      |
| March              | Ō                   | Ó       | O I     | Ōİ   | Ó                       |
| April              | 4,136               | 520     | 1       | 138  | 8,200                   |
| May                | 170.6               | 13      | 1.2     | 5.50 | 338                     |
| June               | 45.1                | 4.0     | .5      | 1.50 | 89                      |
| July               | 15.7                | 1.6     | .1      | .51  | 31                      |
| August             | 3.5                 | .2      | 0       | .11  | 6.9                     |
| September          | 0                   | 0       | 0       | 0    | 0                       |
| Water Year 1947-48 | 4,382.1             | 520     | 0       | 12.0 | 8,690                   |

| Month              | Second<br>Foot Days | Maximum | Minimum         | Mean | Run-off in<br>Acre-Feet |
|--------------------|---------------------|---------|-----------------|------|-------------------------|
| October            | 0                   | 0       | 0               | 0    | 0                       |
| November           | 5.5                 | .4      | Ó               | .18  | 11                      |
| December           | 1.0                 | .2      | 0               | .03  | $\bar{2},0$             |
| January            | 0                   | 0       | 0               | 0    | 0                       |
| February           | 0                   | ) 0     | 0 1             | 0 1  | Ó                       |
| March              | 472                 | 320     | 0               | 15.2 | 936                     |
| April              | 1,218.3             | 250     | 1.8             | 40.6 | 2,420                   |
| May                | 80.0                | 7.2     | .9 <sup>1</sup> | 2.58 | 159                     |
| June               | 32.6                | 5.1     | .2              | 1.09 | 65                      |
| July               | 61.5                | 13      | .2              | 1.98 | 122                     |
| August             | 3.1                 | .5      | 0 1             | .10  | 6.1                     |
| September          | 0                   | 0       | 0               | 0    | 0                       |
| Water Year 1948-49 | 1,874.0             | 320     | 0               | 5.13 | 3,720                   |

#### RED RIVER OF THE NORTH BASIN Goose River near Portland, N. Dak.

Location.—Chain gage, lat. 47°33', long. 97°28', on line between secs. 12 and 13, T. 147 N., R. 54 W., at highway bridge  $6\frac{1}{2}$  miles northwest of Portland. Datum of gage is 978.76 feet above mean sea level, datum of 1929.

Drainage area.-544 square miles.

Records available.—October 1939 to September 1949.

Average discharge.-10 years, 19.9 second-feet.

Extremes.-Maximum discharge during year, 1,200 second-feet Apr. 7 (gage height, 13.60 feet, affected by ice); no flow for several months.

1939-49: Maximum discharge, 4,700 second-feet Apr. 21, 1948 (gage height, 21.30 feet); no flow for several months in each year.

Remarks.—Records good except those for periods of indefinite stage-discharge relation, which are poor. Gage read once daily.

| Month               | Second<br>Foot Days | Maximum | Minimum | Mean | Run-off in<br>Acre-Feet |
|---------------------|---------------------|---------|---------|------|-------------------------|
|                     |                     |         |         |      | 0                       |
| October             | Ň                   | Ň       |         | Ň    | ň                       |
| November            | Ň                   | Ň       |         | ň    | ň                       |
|                     | Ň                   | Ň       | l ő l   | ň    | ŏ                       |
| January<br>February | Ň                   | l ň     | l ă l   | ň    | č                       |
| March               | ň                   | l ñ     | Ň       | ŏ    | č                       |
| April               | 24,584              | 4,110   | i či    | 819  | 48.760                  |
| Мау                 | 2,052               | 200     | 17      | 66.2 | 4.070                   |
| June                | 218.1               | 16      | 4.2     | 7.27 | 43                      |
| July                | 193.2               | 31      | 3.4     | 6.23 | 383                     |
| August              | 93.8                | 8.0     |         | 3.03 | 180                     |
| September           | 0                   | 0       | 0       | 0    |                         |
| Water Year 1947-48  | 27.141.1            | 4.110   | 0       | 74.2 | 53,83(                  |

| Month              | Second<br>Foot Days | Maximum | Minimum | Mean | Run-off in<br>Acre-Feet |
|--------------------|---------------------|---------|---------|------|-------------------------|
| October            | 0                   | 0       | 0       | 0    | 0                       |
| November           | 3.0                 | .1      | .1      | .10  | 6.                      |
| December           | 4.0                 | .2      | 1.1     | .13  | 7.                      |
| January            | 3.1                 | .1      | .1      | .10  | 6.                      |
| February           | 0                   | ( 0     | 0 1     | 0 1  | 0                       |
| March              | 5.1                 | 3       | 9 0 1   | .16  | 10                      |
| April              | 7,709               | 1,100   | 5       | 257  | 15,290                  |
| May                | 341.1               | 23      | 3.2     | 11.0 | 677                     |
| June               | 1.730.2             | 535     | 2.1     | 57.7 | 3,430                   |
| July               | 150.4               | 40      | .1      | 4.85 | 298                     |
| August             | 27.1                | 4.0     | 0       | .87  | 54                      |
| September          | 0                   | 0       | 0 0     | 0    | 0                       |
| Water Year 1948-49 | 9,973.0             | 1,100   |         | 27.3 | 19,780                  |

#### RED RIVER OF THE NORTH BASIN Goose River at Hillsboro, N. Dak.

Location.--Water-stage recorder, lat. 47°24', long. 97°03', in NW¼ sec. 5, T. 145 N., R. 50 W., 50 feet upstream from city water-supply dam.

Drainage area.---1,200 square miles.

Records available.—March 1931 to Scptember 1949 (no winter records prior to 1938). Average discharge.—11 years (1938-49), 44.6 second feet.

Extremes.---Maximum discharge during year, 1,640 second-feet Apr. 8 (gage height, 3.38 feet); minimum, 0.1 second-foot Oct. 1-11; minimum gage height, -1.03 feet Sept. 30.

1931-49: Maximum discharge, 4,180 second feet Apr. 16, 1948 (gage height, 10.65 feet); no flow at times in 1936, 1938-47.

Maximum stage since 1897, 11.55 feet March 25, 26, 1920 (present datum); discharge 4,800 second feet. Stage in 1897 was about 3 feet higher.

Remarks.—Records good except those for periods of ice effect or indefinite stagedischarge relation, which are fair.

| Month              | Second<br>Foot Days | Maximum | Minimum | Mean  | Run-off in<br>Acre-Feet |
|--------------------|---------------------|---------|---------|-------|-------------------------|
| October            | 23.8                | 1.2     | 0.6     | 0.77  | 47                      |
| November           | 65.6                | 2.8     | 1.3     | 2.19  | 130                     |
| December           | 45.2                | 2.3     | .9      | 1.46  | 90                      |
| January            | 14.0                | .8      | .2      | .45   | 28                      |
| February           | 2.9                 | .1      | .1      | .10   | 5.                      |
| March              | 16.5                | 1.6     | .1      | .53   | 33                      |
| April              | 55.198.8            | 4.150   | 1.5     | 1.840 | 109,500                 |
| May                | 4,588               | 474     | 46      | 148   | 9,100                   |
| June               | 696                 | 44      | 14      | 23.2  | 1.380                   |
| July               | 485                 | 46      | 10      | 15.6  | 961                     |
| August             | 307.0               | 18      | 2.0     | 9.901 | 609                     |
| September          | 28.5                | 2.0     | .2      | .95   | 57                      |
| Water Year 1947-48 | 61,471.3            | 4,150   | .1      | 168   | 121.900.                |

| Month              | Second<br>Foot Days | Maximum | Minimum | Mean | Run-off in<br>Acre-Feet |
|--------------------|---------------------|---------|---------|------|-------------------------|
| October            | 13.8                | 2.3     | 0.1     | .45  | 27                      |
| November           | 113.3               | 5.8     | 2.5     | 3.78 | 225                     |
| December           | 50.0                | 2       | .5      | 1.61 | 99                      |
| January            | 14.2                | .5      | .4      | .46  | 28                      |
| February           | 7.2                 | .3      | .2      | .26  | 14                      |
| March              | 35.2                | 6       | .3      | 1.14 | 70                      |
| April              | 15,486              | 1.550   | 8       | 516  | 30,720                  |
| May                | 1.174               | 62      | 14      | 37.9 | 2,330                   |
| June               | 4,766               | 838     | 14      | 159  | 9,450                   |
| July               | 577.6               | 65      | 9.4     | 18.6 | 1,150                   |
| August             | 388.6               | 73      | 1.5     | 12.5 | 771                     |
| September          | 33.3                | 1.4     | .8      | 1.11 | 66                      |
| Water Year 1948-49 | 22,659.2            | 1,550   | .1      | 62.1 | 44,950                  |

#### RED RIVER OF THE NORTH BASIN Turtle River at Manvel, N. Dak.

Location.—Chain gage, lat. 48°05', long. 97°11', in SE¼ sec. 10, T. 153 N., R. 51 W., at bridge on State Highway 33, 0.3 mile west of Manvel and 10 miles upstream from mouth.

Records available .- October 1945 to September 1949.

Extremes.—Maximum daily discharge during year, 1,600 second-feet Apr. 10; maximum gage height, 16.35 feet Apr. 9 (affected by ice); minimum discharge, 0.1 secondfoot Jan. 10 to Apr. 6, Sept. 24, 25.

1945-49: Maximum discharge, 3,450 second-feet Apr. 19, 1948 (gage-height, 17.88 feet); minimum, 0.1 second-foot at times each year.

Remarks.-Records good except those for period of ice effect which are fair. Gage read once daily.

| Month              | Second<br>Foot Days | Maximum | Minimum | Mean   | Run-off in<br>Acre-Feet |
|--------------------|---------------------|---------|---------|--------|-------------------------|
| October            | 353.5               | 57      | 1.6     | 11.4   | 701                     |
| November           | 131.3               | 6.9     | 1.9     | 4.38   | 260                     |
| December           | 58.8                | 2.5     | .8      | 1.90   | 117                     |
| January            | 5.8                 | .8      | .1      | .19    | 12                      |
| February           | 2.8                 | 1 .1    | 1       | .10    | 5.6                     |
| March              | 2.273.1             | 350     | .1      | 73.3   | 4,510                   |
| April              | 5.793               | 418     | 27      | 193    | 11,490                  |
| May                | 639                 | 31      | 14      | 20.6   | 1,270                   |
| June               | 1.763               | 259     | Î       | 58.8   | 3,500                   |
| July               | 257.1               | 16      | 2.8     | 8.29   | 510                     |
| August             | 266.3               | 35      | 1.4     | 8.59   | 528                     |
| September          | 45.7                | 5.6     | .5      | 1.52   | 91                      |
|                    |                     | Ì       | İ       |        |                         |
| Water Year 1946-47 | 11,589.4            | 418     | .1      | 31.8 į | 22,990                  |

| Month              | Second<br>Foot Days | Maximum | Minimum | Mean | Run-off in<br>Acre-Feet |
|--------------------|---------------------|---------|---------|------|-------------------------|
|                    | 100.4               | 1 10    | 1.7     |      | 394                     |
| October            | 198.4               | 12      | 1.7     | 6.40 |                         |
| November           | 211.6               | 9.9     | 5.0     | 7.05 | 420                     |
| December           | 77.4                | 1 5.0   | .3      | 2.50 | 154                     |
| anuary             | 3.6                 | .2      | .1      | .12  | 7                       |
| February           | 2.9                 | 1.1     | 1.1     | .10  | 5                       |
| March              | 3.1                 | ( .ī    | .1      | .10  | 6                       |
| April              | 27.063.7            | 3.360   | ī       | 902  | 53.680                  |
| May                | 2.121               | 212     | 20      | 68.4 | 4,210                   |
| une                | 2.646               | 447     | 19      | 88.2 | 5.250                   |
| uly                | 654.3               | 62      | 7.9     | 21.1 | 1,300                   |
| August             | 310.0               | 28      | 3.4     | 10.0 | 615                     |
|                    |                     |         |         | 2.19 |                         |
| September          | 65.7                | 19      | .4      | 2.19 | 130                     |
|                    |                     | 1       | 1 [     |      |                         |
| Water Year 1947-48 | 33.357.7            | 3.360   | 1.1     | 91.1 | 66.170                  |

| Month              | Second<br>Foot Days | Maximum | Minimum  | Mean | Run-off in<br>Acre-Feet |
|--------------------|---------------------|---------|----------|------|-------------------------|
|                    |                     |         |          | 1 00 |                         |
| October            | 40.2                | 4.8     | 0.2      | 1.30 | 80                      |
| November           | 138.6               | 8.6     | 1        | 4.62 | 275                     |
| December           | 14.5                | 1       | .2       | .47  | 29                      |
| January            | 4.0                 | 1.2     | .1       | .13  | 7.9                     |
| February           | 2.8                 | .1      | .1       | .10  | 5.0                     |
| March              | 3.1                 | i .1    | 1 .1     | .10  | 6.1                     |
| April              | 11.536.6            | 1.600   | .1       | 385  | 22.880                  |
| May                | 889                 | 51      | 14       | 28.7 | 1,760                   |
| June               | 1,021.2             | 162     | 8.2      | 34.0 | 2,030                   |
| July               | 260.3               | 13      | 4.4      | 8.40 | 516                     |
| August             | 94.5                | 9.7     | .5       | 3.05 | 187                     |
| September          | 12.4                | .8      | <u> </u> | .41  | 25                      |
| Water Year 1948-49 | 14.017.2            | 1,600   | .1       | 38.4 | 27,800                  |

#### **RED RIVER OF THE NORTH BASIN** Forest River near Fordville, N. Dak.

Location.—Chain gage, lat. 48°12′, long. 97°44′, on line between sec. 32 and 33, T. 155 N., R. 55 W., at highway bridge, a quarter of a mile downstream from South Branch and 3 miles southeast of Fordville.

Drainage area.-491 square miles.

Records available .--- April 1940 to September 1949.

Extremes.—Maximum discharge observed during year, 1,470 second-feet Apr. 7 (gage height 5.64 feet); minimum daily discharge, 2.1 second-feet Oct. 5; minimum gage height observed, 1.23 feet Aug. 22.

1940-49: Maximum discharge, 19,000 second-feet, Apr. 18, 1948, (gage height, 14.25 feet), by slope area method; no flow Apr. 1-13, Sept. 3, 1940.

Remarks .-- Records fair after Apr. 6 and poor before. Gage read once daily.

| Month              | Second<br>Foot Days | Maximum | Minimum | Mean  | Run-off in<br>Acre-Feet |
|--------------------|---------------------|---------|---------|-------|-------------------------|
| October            | 142.2               | 6.0     | 3.6     | 4.59  | 282                     |
| N                  | 127.5               | 4.5     | 4.0     | 4.25  | 253                     |
| December           | 131.5               | 4.5     | 2.0     | 4.24  | 261                     |
| January            | 99.6                | 3.8     | 2.0     | 3.21  | 198                     |
| February           | 60.8                | 2.6     | 1.7     | 2.17  | 121                     |
| March              | 2.030.0             | 600     | 2.6     | 65.5  | 4.030                   |
| April              | 1.249               | 150     | 12      | 41.6  | 2.480                   |
| May                | 279.1               | 12      | 7.3     | 100.6 | 554                     |
| June               | 223.6               | 8.4     | 5.9     | 7.45  | 444                     |
| July               | 182.7               | 48      | 3.4     | 5.89  | 362                     |
| August             | 105.8               | 5.0     | 3.0     | 3.41  | 210                     |
| September          | 105.5               | 10      | 2.8     | 3.52  | 209                     |
| Water Year 1946-47 | 4,737.3             | 600     | 1.7     | 13.0  | 9,400                   |

| Month              | Second<br>Foot Days | Maximum | Minimum | Mean   | Run-off in<br>Acre-Feet |
|--------------------|---------------------|---------|---------|--------|-------------------------|
| October            | 150.9               | 7.6     | 4.0     | 4.87   | 299                     |
| November           | 139.5               | 6.0     | 3.8     | 4.65   | 277                     |
| December           | 174.1               | 6.0     | 5.0     | 5.62   | 345                     |
| January            | 155                 | 5       | 5       | 5.0    | 307                     |
| February           | 145                 | 5       | 5       | 5.0    | 288                     |
| March              | 161.5               | 5.5     | 5       | 5.21   | 320                     |
| April              | 26,770              | 7,480   | 5       | 892    | 53.100                  |
| Мау                | 1,416               | 126     | 1,9     | 45.7   | 2.810                   |
| June               | 638                 | 72      | 12      | 21.3 j | 1,270                   |
| July               | 276.1               | 15      | 5.9     | 8.91   | 548                     |
| August             | 261.9               | 20      | 4.5     | 8.45   | 519                     |
| September          | 118.3               | 4.5     | 3.5     | 3.94   | 235                     |
| Water Year 1947-48 | 30,406.3            | 7,480   | 3.5     | 83.1   | 60,320                  |

| Month              | Second<br>Foot Days | Maximum | Minimum | Mean | Run-off in<br>Acre-Feet |
|--------------------|---------------------|---------|---------|------|-------------------------|
| October            | 133.3               | 5.5     | 2,1     | 4.30 | 264                     |
| November           | 155.2               | 6.3     | 4.5     | 5.17 | 308                     |
| December           | 117.4               | 4.6     | 3.5     | 3.79 | 233                     |
| January            | 93                  |         | 0.0     | 3    | 184                     |
| February           | 84                  |         |         | 3    | 167                     |
| March              | 149.2               | 10      | 3       | 4.81 | 296                     |
| April              | 10,019              | 1,180   | 13      | 334  | 19,870                  |
| May                | 553                 | 38      | 11      | 17.8 | 1,100                   |
| June               | 228.3               | 15      | 5.1     | 7.61 | 453                     |
| July               | 340.3               | 23      | 5.0     | 11.0 | 675                     |
| August             | 159.1               | 6.9     | 3.4     | 5.13 | 316                     |
| September          | 107.3               | 4.0     | 3.2     | 3.58 | 213                     |
| Water Year 1948-49 | 12,139.1            | 1,180   | 2.1     | 33.3 | 24.080                  |

#### **RED RIVER OF THE NORTH BASIN** Forest River at Minto, N. Dak.

Location.—Wire-weight gage, lat. 48°16'10", long. 97°22'10", in SE¼ sec. 31, T. 156 N., R. 52 W., in Minto.

Records available .- April 1944 to September 1949.

Extremes.--Maximum discharge during year, 2,140 second-feet Apr. 7 (gage height, 8,19 feet); minimum, 0.4 second-foot Mar. 13-19; minimum gage height, 1.14 feet Oct. 7-10.

1944-49: Maximum discharge, 12,000 second-feet April 19, 1948 (gage height, 11.80 feet); by contracted opening measurement; no flow at times each year 1945-47. Remarks .--- Records fair. Gage read once daily.

| Month              | Second<br>Foot Days | Maximum | Minimum | Mean | Run-off in<br>Acre-Feet |
|--------------------|---------------------|---------|---------|------|-------------------------|
|                    | 157.1               | 7.2     | 2.3     | 5.07 | 312                     |
| October            | 174.8               | 7.2     | 3.8     | 5.83 | 347                     |
| November           |                     |         |         | 2.74 | 168                     |
| December           | 84.9                | 4.6     | .8      |      |                         |
| January            | 15.4                | 1.2     | .3      | .50  | 31                      |
| February           | .6                  | .1      | 0       | .02  | 1.2                     |
| March              | 2,790               | 1 700   | 0       | 90.0 | 5,530                   |
| April              | 2,901               | 270     | 24      | 96.7 | 5,750                   |
| May                | 532                 | 26      | 13      | 17.2 | 1,060                   |
| June               | 466.3               | 30      | 9.3     | 15.5 | 925                     |
| July               | 607.9               | 129     | 5.4     | 19.6 | 1.210                   |
| August             | 166.6               | 8.2     | 3.8     | 5.37 | 330                     |
| September          | 109.4               | 6.2     | 1.2     | 3.65 | 217                     |
| Water Year 1946-47 | 8,006.0             | 700     | σ       | 21.9 | 15,880                  |

| Month              | Second<br>Foot Days | Maximum | Minimum | Mean  | Run-off in<br>Acre-Feet |
|--------------------|---------------------|---------|---------|-------|-------------------------|
|                    |                     |         |         |       |                         |
| October            | 121.3               | 6.2     | 1.7     | 3.91  | 241                     |
| November           | 182.9               | 7.2     | 5.4     | 6.10  | 363                     |
| December           | 162.2               | 5.4     | 4.6     | 5.23  | 322                     |
| January            | 107.0               | 4.6     | 2.3     | 3.45  | 212                     |
| February           | 21.9                | 2.3     | .3      | .761  | 43                      |
| March              | 5.5                 | .3      | .1      | .18   | 11                      |
| April              | 37,519.3            | 9.900   | .5      | 1.251 | 74.420                  |
|                    | 3.294               | 270     | 39      | 106   | 6.530                   |
| May                |                     |         | 23      | 40.5  | 2,410                   |
| June               | 1,215               | 80      | 23      |       | 2,410                   |
| July               | 581                 | 35      | 12      | 18.7  | 1,150                   |
| August             | 294.8               | 16      | 5.4     | 9.51  | 585                     |
| September          | 142.2               | 7.2     | 3.8     | 4.74  | 282                     |
| 1                  |                     |         |         | I     |                         |
| Water Year 1947-48 | 43,647.1            | 9,900   | .1      | 119   | 86,570                  |

| Month              | Second<br>Foot Days | Maximum | Minimum    | Mean | Run-off in<br>Acre-Feet |
|--------------------|---------------------|---------|------------|------|-------------------------|
| October            | 125.4               | 7.2     | 0.5        | 4.05 | 249                     |
| November           | 210.4               | 9.3     | 6.2        | 7.01 | 417                     |
|                    | 114.1               | 6.2     | 2          | 3.68 | 226                     |
| December           |                     | 2 0.4   | <b>.</b> 6 | 1.14 | 70                      |
| January            | 35.2                | 2       | 0.         |      |                         |
| February           | 14.0                |         |            | .5   | 28                      |
| March              | 18.4                | 1       | .4         | .59  | 36                      |
| April              | 15.514              | 2,000   | 2 1        | 517  | 30,770                  |
| May                | 1.162               | 71      | 22         | 37.5 | 2,300                   |
| June               | 523                 | 24      | 12 1       | 17.4 | 1.040                   |
| July               | 347.0               | 30      | 4.8        | 11.2 | 688                     |
|                    | 102.3               | 8.9     | 1.0        | 3.30 | 203                     |
| August             | 19.6                | 1.0     | .5         | .65  | 39                      |
| September          | 19.0                | 1 1.0   | , .,       | .001 | 00                      |
| Water Year 1948-49 | 18,185.4            | 2,000   | .4         | 49.8 | 36,070                  |

### RED RIVER OF THE NORTH BASIN South Branch Park River near Park River, N. Dak.

Location.—Chain gage, lat.  $48^{\circ}24'$ , long.  $97^{\circ}50'$ , on line between sec. 15 and 16, T. 157 N., R. 56 W., at highway bridge, half a mile upstream from small stream and  $4\frac{1}{2}$  miles northwest of town of Park River.

Drainage area.-255 square miles.

Records available.--March 1940 to September 1949.

Extremes.—Maximum discharge observed during ycar, 1,200 second-feet Apr. 9 (gage height, 5.93 feet); no flow Aug. 5-10, 15-21, 25-31, Sept. 1-5.

1940-49: Maximum discharge, 11,000 second-feet Apr. 18, 1948 (gage height, 11.80 feet); no flow during part of most years.

**Remarks.**—Records good except those for periods of ice effect or doubtful gageheight record, which are poor. Gage read once daily.

| Month              | Second<br>Foot Days | Maximum | Minimum | Mean  | Run-off in<br>Acre-Feet |
|--------------------|---------------------|---------|---------|-------|-------------------------|
| October            | 11.6                | 1.0     | 0.1     | 0.37  | 23                      |
| November           | 5.1                 | .2      | .1      | .17   | 10                      |
| December           | 3.1                 | 1 .1    | i i i   | .10   | 6.1                     |
| January            | 1.0                 | i .ī    | 0       | .031  | 2.0                     |
| February           | 0                   | 0       | 0       | 0     | 0                       |
| March              | 912.3               | 160     | 0       | 29.4  | 1.810                   |
| April              | 2,399.9             | 210     | 8.4     | \$0.0 | 4.760                   |
| May                | 122.2               | 8.9     | 2.3     | 3.94  | 242                     |
| June               | 473.9               | 94      | 2.0     | 15.8  | 940                     |
| July               | 739.4               | 258     | .4      | 23.9  | 1,470                   |
| August             | 77.5                | 9.4     | .3      | 2.50  | 154                     |
| September          | 94.7                | 38      | .1      | 3.16  | 188                     |
| Water Year 1946-47 | 4,840.7             | 258     | 0       | 13.3  | 9,610                   |

| Month              | Second<br>Foot Days | Maximum | Minimum | Mean | Run-off in<br>Acre-Feet |
|--------------------|---------------------|---------|---------|------|-------------------------|
| October            | 48.0                | 5.6     | 0.8     | 1.55 | 95                      |
| November           | 28.4                | 1.4     | .6      | .95  | 56                      |
| December           | 14.3                | .6      | .3      | .46  | 28                      |
| January            | 4.6                 | .2      | .1      | .15  | -9.1                    |
| February           | 2.9                 | 1 .1    | . 11    | .10  | 5.8                     |
| March              | 9.4                 | 1 .8    | 11      | .30  | 19                      |
| April              | 17.354.7            | 4.900   | .8      | 578  | 34,420                  |
| May                | 1.420               | 113     | 12      | 45.8 | 2.820                   |
| June               | 349                 | 18      | 6.8     | 11.6 | 692                     |
| July               | 625.4               | 59      | 9.4     | 20.2 | 1.240                   |
| August             | 673.3               | 144     | 2.2     | 21.7 | 1,340                   |
| September          | 7.8                 | .9      | .2      | .26  | 15                      |
| Water Year 1947-48 | 20,537.8            | 4,900   | .1      | 56.1 | 40,740                  |

| Month              | Second<br>Foot Days | Maximum | Minimum | Mean | Run-off in<br>Acre-Feet |
|--------------------|---------------------|---------|---------|------|-------------------------|
| October            | 11.8                | 0.8     | 0.2     | 0.38 | 23                      |
| November           | 6.2                 | .3      | .2      | .21  | 12                      |
| December           | 4.3                 | .2      | .1      | .14  | 8.5                     |
| January            | 3.1                 | 1 .1    | i .i I  | .10  | 6.1                     |
| February           | 2.8                 | i .ī :  | ī       | .10  | 5.6                     |
| March              | 3.5                 | .4      | .ī      | .11  | 6.9                     |
| April              | 7.532.7             | 1.110   | .7      | 251  | 14.940                  |
| Мау                | 401.5               | 35      | 4.6     | 13.0 | 796                     |
| June               | 67.8                | 6.1     | .7      | 2.26 | 134                     |
| July               | 11.4                | 1.0     | .11     | .37  | 23                      |
| August             | 1.3                 | .2      | 0       | .04  | 2.6                     |
| September          | 4.4                 | .2      | 0       | .15  | 8.7                     |
| Water Year 1948-49 | 8,050.8             | 1,110   | 0       | 22.1 | 15.970                  |

#### RED RIVER OF THE NORTH BASIN Park River at Grafton, N. Dak.

Location.—Wire-weight gage, lat. 48°25', long. 97°24', in NE¼ sec. 13, T. 157 N., R. 53 W., in Grafton. Rubble masonry control dam 2 miles downstream. Datum of gage is 807.39 feet above mean sea level, adjustment of 1929.

Drainage area.—753 square miles.

Records available .- April 1931 to September 1949 (incomplete prior to 1937).

Average discharge .--- 13 years (1936-49), 46.2 second-feet.

Extremes.--Maximum discharge during year, 2,530 second-feet Apr. 11; maximum gage height, 17.25 feet Apr. 9 (affected by ice); no flow Sept. 18-30.

1931-49: Maximum discharge, 11,700 second-feet Apr. 19, 1948 (gage height, 20.06 feet); no flow at times in most years.

Remarks.-Records good except those for period of icc effect, which are fair. Gage read once or twice daily.

| Month              | Second<br>Foot Days | Maximum | Minimum     | Mean | Run-off in<br>Acre-Feet |
|--------------------|---------------------|---------|-------------|------|-------------------------|
| October            | 11.8                | 1.9     | 0           | 0.38 | 23                      |
| November           | 5.7                 | .5      | .1          | .19  | 11                      |
| December           | 1.2                 | i .1    | 0           | .04  | 2.4                     |
| January            | 0                   | 1 0     | i 0 i       | 0    | 0                       |
| February           | 0                   | j 0     | 0           | 0 1  | 0                       |
| March              | 147                 | 60      | 0           | 4.7  | 292                     |
| April              | 5.095               | i 500   | 1 <b>26</b> | 170  | 10,110                  |
| May                | 302.3               | 26      | 2.2         | 9.75 | 600                     |
| June               | 625.1               | 40      | 1.5         | 20.8 | 1,240                   |
| July               | 1,921.5             | 375     | 1.0         | 62.0 | 3,810                   |
| August             | 394.3               | 55      | .8          | 12.7 | 782                     |
| September          | 112.3               | 30      | .1          | 3.74 | 223                     |
| Water Year 1946-47 | 8,616.2             | 500     | 0           | 23.6 | 17,090                  |

| Month              | Second<br>Foot Days | Maximum | Minimum | Mean  | Run-off in<br>Acre-Feet |
|--------------------|---------------------|---------|---------|-------|-------------------------|
| October            | 39.8                | 3.3     | 0.3     | 1.28  | 79                      |
|                    | 39.8<br>75.3        | 5.3     | 1.0     | 2.51  | 149                     |
| November           |                     |         |         |       |                         |
| December           | 74.6                | 3.3     | 1.0     | 2.41  | 148                     |
| January            | 15.0                | 1.0     | .3      | .48   | 30                      |
| February           | 3.4                 | .2      | .1      | .12   | 6                       |
| March              | 14.4                | 1.5     | .1      | .46   | 29                      |
| April              | 54.257.4            | 10.500  | 1.5     | 1.809 | 107.600                 |
| May                | 6.744               | 868     | 47      | 218   | 13.380                  |
| June               | 1.134               | i 88    | 14      | 37.8  | 2,250                   |
| July               | 1.400               | 80      | 23      | 45.2  | 2.780                   |
| August             | 945.1               | 261     | 7.5     | 30.5  | 1.870                   |
| September          | 70.0                | 7.5     | .9      | 2.33  | 139                     |
| Water Year 1947-48 | 64,773.0            | 10,500  | .1      | 177   | 128,500                 |

| Month              | Second<br>Foot Days | Maximum | Minimum | Mean | Run-off in<br>Acre-Feet |
|--------------------|---------------------|---------|---------|------|-------------------------|
|                    |                     |         |         | 40   |                         |
| October            | 15.0                | 2.2     | .1      | .48  | 30                      |
| November           | 31.0                | 2.2     | .5      | 1.03 | 61                      |
| December           | 11.9                | i .5    | .3      | .38  | 24                      |
| January            | 7.0                 | .3      | .2      | .23  | 14                      |
| February           | 5.6                 | .2      | .2      | .20  | 11                      |
| March              | 9.6                 | 1       | .2      | .31  | 19                      |
| April              | 23,065              | 2.500   | 2       | 769  | 45,750                  |
| May                | 1,592               | 122     | 17      | 51.4 | 3,160                   |
| June               | 344.8               | 21      | 4.6     | 11.5 | 684                     |
| July               | 70.6                | 3.9     | 1.0     | 2.28 | 140                     |
| August             | 35.8                | 4.6     | .2      | 1.15 | 71                      |
| September          | 1.8                 | .2      | 0 1     | .06  | 3.                      |
| Water Year 1948-49 | 25,190.1            | 2,500   | 0       | 69.0 | 49,970                  |

#### RED RIVER OF THE NORTH BASIN Pembina River near Manitou, Manitoba

Location.—Chain gage, lat.  $49\,^\circ08\,'50''$ , long.  $98\,^\circ23\,'30''$ , on bridge near Lea's farm, 9 miles south of Manitou.

Drainage area.—2,060 square miles.

**Records available.**—October 1929 to September 1949 (incomplete) in reports of Geological Survey. April 1921 to September 1949 in reports of Dominion Water and Power Bureau, Department of Mines and Resources, Canada.

Extremes.—Maximum discharge observed during year, 5,030 second-feet Apr. 17 (gage height, 101.68 feet); minimum discharge not determined.

1921-49: Maximum daily discharge observed, that of Apr. 17, 1949; no flow on many days in 1934, 1937, 1939-41.

Remarks.—Records good except those for period of ice effect, which are poor. Gage read once daily.

Cooperation.--Records furnished by Dominion Water and Power Bureau, Department of Mines and Resources, Canada.

| Month                   | Second<br>Foot Days | Maximum | Minimum | Mean | Run-off in<br>Acre-Feet |
|-------------------------|---------------------|---------|---------|------|-------------------------|
| Ostohan                 | 1.032.5             | 40.8    | 28.0    | 33.3 | 2,050                   |
| October<br>November 1-7 | 210.5               | 31.5    | 29.0    | 20.1 | 418                     |
|                         | 210.0               | 01.0    | 45.0    | 20.1 | 410                     |
|                         |                     |         |         |      |                         |
| January                 |                     |         |         |      |                         |
| ebruary                 |                     |         |         |      |                         |
| March                   |                     | l       |         |      |                         |
| April 12-30             | 9,839               | 1,190   | 10.0    | 518  | 19,520                  |
| Vlay                    | 18,194              | 684     | 413     | 587  | 36,090                  |
| lune                    | 7,884               | 399     | 172     | 263  | 15,640                  |
| [uly]                   | 4,928               | 258     | 131     | 159  | 9,780                   |
| August                  | 4.287               | i 199   | 106     | 138  | 8.500                   |
| September               | 2,576               | 113     | 58      | 86   | 5,110                   |

| Month         | Second<br>Foot Days | Maximum | Minimum | Mean  | Run-off in<br>Acre-Feet |
|---------------|---------------------|---------|---------|-------|-------------------------|
| October       | 1.269.3             | 55      | 29.5    | 40.9  | 2,520                   |
| November 1-13 | 392.5               | 31.5    | 29.0    | 30.2  | 779                     |
|               | 372.0               | 01.0    | 20.0    | 00.2  | (15                     |
|               |                     |         |         |       |                         |
|               |                     |         |         |       |                         |
|               |                     |         |         |       |                         |
|               |                     | F 000   |         |       |                         |
| April 5-30    | 60,790              | 5,030   | 20      | 2,340 | 120,600                 |
| May           | 33,667              | 1,950   | 641     | 1,090 | 66,780                  |
| June          | 14,122              | 795     | 272     | 471   | 28,010                  |
| July          | 6,009               | 262     | 144     | 194   | 11,920                  |
| August        | 2,892               | 138     | 65 İ    | 93    | 5.740                   |
| September     | 1.592.4             | 74      | 32      | 53 1  | 3,160                   |

. -

STATE OF NORTH DAKOTA

### RED RIVER OF THE NORTH BASIN Pembina River near Walhalla, N. Dak.

Location.—Water-stage recorder, lat. 48°53'32", long. 97°59'09", in SE¼SW¼ sec. 35, T. 163 N., R. 57 W., 1½ miles downstream from Little Pembina River and 3½ miles southwest of Walhalla.

Drainage area.---3,020 square miles.

Records available .- October, 1939 to September 1949.

Average discharge.-10 years, 210 second-feet.

Extremes.—Maximum discharge during year, 5,840 second-feet Apr. 19 (gage height, 13.18 feet); minimum discharge, 4 second-feet Mar. 5-22; minimum gage height, 1.97 feet Nov. 9.

1939-49: Maximum discharge, 7,280 second-feet Apr. 19, 1948 (gage height, 14.94 feet); no flow during parts of 1940, 1941, 1947.

Remarks .--- Records good except those for period of ice effect, which are fair.

| Month              | Second<br>Foot Days | Maximum | Minimum | Mean | Run-off in<br>Acre-Feet |
|--------------------|---------------------|---------|---------|------|-------------------------|
|                    |                     | 1       |         |      |                         |
| October            | 1.416               | 64      | 38      | 45.7 | 2,810                   |
|                    | 780                 | 37      | 16 1    | 26.0 | 1,550                   |
|                    | 445                 | 18      | 11      | 14.4 | 883                     |
| December           | 375                 | 14      | 8       | 12.1 | 744                     |
| January            | 150                 | 17      |         | 5.2  | 298                     |
| February           |                     | 1 16    | 5       | 6.9  | 422                     |
| March              | 213                 | 10      |         | 977  | 58,150                  |
| April              | 29,315              | 4,340   |         |      |                         |
| May                | 25,826              | 1,050   | 603     | 833  | 51,230                  |
| June               | 10,833              | 580     | 230     | 361  | 21,490                  |
| July               | 8,493               | 504     | 171     | 274  | 16,850                  |
| August             | 5,896               | 260     | 154     | 190  | 11,690                  |
| September          | 3,324               | 154     | 76      | 111  | 6,590                   |
|                    |                     | 1       |         | 000  | 172.700                 |
| Water year 1947-48 | 87,066              | 4,340 _ | 5       | 238  | 1/2,/00                 |

| Month              | Second<br>Foot Days | Maximum | Minimum | Mean  | Run-off in<br>Acre-Feet |
|--------------------|---------------------|---------|---------|-------|-------------------------|
|                    | _                   | l       |         |       |                         |
| October            | 1,887               | 74      | 47      | 60.9  | 3,740                   |
| November           | 1.119               | 56      | 26      | 37.3  | 2,220                   |
| December           | 597                 | 30      | 14      | 19.3  | 1,180                   |
|                    | 510                 | 18      | 14      | 16.5  | 1,010                   |
|                    | 258                 | 14      | 6       | 9.2   | 512                     |
| February           | 174                 | 1 14    | 1 4 1   | 5.6   | 345                     |
| March              |                     | 5.740   | 16      | 2.703 | 160.800                 |
| April              | 81,079              |         |         | 1.409 | 86.610                  |
| May                | 43,667              | 2,550   | 830     |       |                         |
| June               | 18,068              | 969     | 342     | 602   | 35,840                  |
| July               | 7.156               | 330     | 177     | 231   | 14,190                  |
| August             | 3.713               | 1 175   | 76      | 120   | 7,360                   |
| September          | 1,748               | 74      | 41      | 58.3  | 3,470                   |
| Water Year 1948-49 | 159.976             | 5,740   | 4       | 438   | 317,300                 |

### **RED RIVER OF THE NORTH BASIN** Pembina River at Neche, N. Dak.

Location.—Water-stage recorder 60 feet upstream from concrete dam. lat. 48°59'20", long. 97°33'05", in SE4NW4 sec. 31, T. 164 N., R. 53 W., in Neche.

Drainage area .--- 3,080 square miles.

Records available.---May 1903 to September 1915, April 1919 to September 1949. Average discharge.---30 years (1919-49), 142 second-feet.

Extremes.-Maximum discharge during year, 5,010 second-feet Apr. 22 (gage height, 20.83 feet) ; minimum discharge, 10 second-feet Mar. 28 to Apr. 2 ; minimum gage height, 5.88 feet Dec. 17-24, Jan. 16.

1903-15, 1919-49: Maximum discharge, that of Apr. 22, 1949; no flow at times during each year, 1932-41.

Remarks .-- Records excellent except those for periods of ice effect, which are fair. Cooperation .- This station is one of the international gaging stations maintained by the United States under agreement with Canada.

| Month              | Second<br>Foot Days | Maximum | Minimum        | Mean  | Run-off in<br>Acre-Feet |
|--------------------|---------------------|---------|----------------|-------|-------------------------|
| October            | 2.064               | 82      | 51             | 66.6  | 4.090                   |
| November           | 1.371               | 64      | 33             | 45.7  | 2,720                   |
| December           | 640                 | 33      | 12             | 20.6  | 1.270                   |
| January            | 397                 | 14      | 12             | 12.8  | 787                     |
| February           | 336                 | 1 12    | 12             | 12.0  | 666                     |
| March              | 355                 | 12      | 10 t           | 11.5  | 704                     |
| April              | 72.838              | 4.910   | ĪŎ             | 2.428 | 144.500                 |
| May                | 48.650              | 3.070   | 857            | 1,569 | 96.500                  |
| June               | 19,708              | 970     | 401            | 657   | 39,090                  |
| July               | 8,448               | 388     | 215            | 273   | 16,760                  |
| August             | 4,413               | 208     | - <u>8</u> 8 i | 142   | 8,750                   |
| September          | 2,073               | 88      | 56             | 69.1  | 4,110                   |
| Water Year 1948-49 | 161,293             | 4,910   | 10             | 442   | 319.900                 |

### RED RIVER OF THE NORTH BASIN Tongue River at Cavalier, N. Dak.

Location.—Staff gage and concrete control, lat. 48°47'55", long. 97°37'35", in SE4NE4 sec. 4, T. 161 N., R. 54 W., half a mile upstream from State Highway 5 in Cavalier.

Drainage area.---135 square miles.

Records available .-- October 1938 to September 1949.

Average discharge.----11 years, 18.7 second-feet.

Extremes.—Maximum discharge observed during year, 681 second-feet Apr. 11; maximum gage height observed, 3.60 feet Apr. 9 (affected by ice); minimum discharge not determined.

1938-49: Maximum discharge, 1,300 second-feet Apr. 21, 1948 (gage height, 4.38 feet); no flow for several months in some years.

Remarks .--- Records good Apr. 10 to June 11; poor at other times. Gage read once daily.

| Month               | Second<br>Foot Days                                                                | Maximum                                                            | Minimum                                                                                  | Mean                                                                              | Run-off in<br>Acre-Feet                                                              |
|---------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| Detober             | 157.7<br>120.3<br>94.0<br>69.6<br>17.0<br>26.9<br>8,190.6<br>1,996<br>460<br>613.7 | 7.9<br>8.9<br>3.1<br>2.8<br>1.0<br>2.2<br>1,100<br>138<br>24<br>56 | $ \begin{array}{c} 1.5\\ 1.5\\ 3.0\\ 1.0\\ .5\\ .5\\ 2.2\\ 25\\ 10\\ 6.0\\ \end{array} $ | 5.09<br>4.01<br>3.03<br>2.25<br>.59<br>.87<br>273<br>64.4<br>15.3<br>19.8<br>7.63 | $\begin{array}{r} 313\\239\\186\\138\\53\\16,250\\3,960\\912\\1,220\\469\end{array}$ |
| August<br>September | 236.4<br>61.6<br>12.043.8                                                          | 21<br>3.8<br>1.100                                                 | $ \begin{array}{c c} 3.8 \\ 1.1 \\ \hline 5 \\ 5 \\ \hline 5 \\ \hline $                 |                                                                                   | 23.900                                                                               |

| Month              | Second<br>Foot Days | Maximum | Minimum | Mean | Run-off in<br>Acre-Feet |
|--------------------|---------------------|---------|---------|------|-------------------------|
| Month              |                     | i       |         |      |                         |
|                    | 93.4                | 5.2     | .7      | 3.01 | 185                     |
| October            |                     |         | 1.5     | 3.07 | 183                     |
| November           | 92.2                | 6.9     | 1.9     | 1.0  | 61                      |
| December           | 31.0                |         | ]       |      |                         |
| January            | 15.5                |         |         | .5   | 31                      |
|                    | 2.8                 | 1       |         | .1 [ | 5.                      |
| February           | 45.6                | 6.9     | .1      | 1.47 | 90                      |
| March              |                     |         | 5.2     | 176  | 10,460                  |
| April              | 5,275.5             | 676     |         |      | 1.380                   |
| Мау                | 698                 | 41      | 13      | 22.5 |                         |
| June               | 263.3               | 1 21    | 3.1     | 8.78 | 522                     |
|                    | 77.5                | 3.8     | .7 1    | 2.50 | 154                     |
| July               | 40.3                | 3.1     | 1 .4 1  | 1.30 | 80                      |
| August             |                     |         |         | 1.45 | 86                      |
| September          | 43.4                | 3.8     | .4      | 1.40 |                         |
| Water Year 1948-49 | 6,678.5             | 676     | .1      | 18.3 | 13,240                  |

#### **RED RIVER OF THE NORTH BASIN** Souris River near Sherwood, N. Dak. (International gaging station)

Location .- Water-stage recorder and concrete control, lat. 48°59', long. 101°58', Location. — water stage recorder and concrete control, net. 40 05, 1008. 101 05, in NE4 sec. 33, T. 164 N., R. 87 W., three-quarters of a mile south of international boundary and 16 miles northwest of Sherwood. Datum of gage is 1,604.00 feet (revised) above mean sea level, datum of 1929.

Drainage area.-9,570 square miles.

Records available .- March 1930 to September 1949.

Average discharge .---- 15 years (1934-49), 95.9 second-feet.

Extremes.—Maximum discharge during year, 2,720 second-feet Apr. 11 (gage height, 20.56 feet); minimum 1 second-foot Jan. 22-28, Feb. 4, 5, 15-22; minimum gage height, 1.39 feet Sept. 18-19.

1930-49: Maximum discharge, 7,400 second-feet Apr. 28, 1948 (gage height, 23.80 feet); no flow for periods in most years.

Remarks .-- Records good except those for period of ice effect, which are fair.

Cooperation.—This is one of the international gaging stations maintained by the United States under agreement with Canada.

| Month              | Second<br>Foot Days | Maximum       | Minimum | Mean | Run-off in<br>Acre-Feet |
|--------------------|---------------------|---------------|---------|------|-------------------------|
| October            | 295.5               | 14            | 7.5     | 9.53 | 586                     |
| November           | 459.7               | 27            | 9.7     | 15.3 | 912                     |
| December           | 228                 | 12            | 3       | 7.4  | 452                     |
| January            | 76                  | i 4 i         | 1       | 2.5  | 151                     |
| February           | 67                  | 6             | i i     | 2.4  | 133                     |
| March              | 147                 | 8 !           | 3       | 4.7  | 292                     |
| April              | 24,675              | 2.700 1       | 7       | 822  | 48.940                  |
| May                | 2,386               | 180           | 41 1    | 77.0 | 4.730                   |
| June               | 1,614               | 116           | 30 1    | 53.8 | 3,200                   |
| July               | 567                 | ( <u>39</u> ) | ĩi i    | 18.3 | 1.120                   |
| August             | 356.2               | 21            | 5.2     | 11.5 | 707                     |
| September          | 111.1               | 5.2           | 2.1     | 3.70 | 220                     |
| Water Year 1948-49 | 30,982.5            | 2,700         | 1       | 84.9 | 61,440                  |

#### **RED RIVER OF THE NORTH BASIN** Souris River near Foxholm, N. Dak.

Location.—Water stage recorder and artificial control, lat. 48°22', long. 101°30', in SW¼SE¼ sec. 34, T. 157 N., R. 84 W., 3 miles east of Foxholm. Datum of gage is 1,560.73 feet above mean sea level, datum of 1929.

Drainage area.-10,100 square miles.

Records available.-June 1904 to November 1905, April 1937 to September 1949. Average discharge.-12 years (1937-49) 93.3 second-feet.

Extremes .- Maximum discharge during year, 690 second-feet Apr. 15; maximum

gage-height, 10.63 feet about Mar. 22 (high water mark; affected by ice); maximum reverse flow, 25 second-feet April 4; minimum gage height, 5.05 feet Aug. 9, 10.

1904-05, 1937-49: Maximum discharge, 3,040 second-feet May 16, 1948 (gage height, 14.79 feet); maximum reverse flow, that of Apr. 4, 1949.

Remarks .--- Records good. Flow completely regulated by Lake Darling and several smaller reservoirs.

| Month              | Second<br>Foot Days | Maximum | Minimum | Mean | Run-off in<br>Acre-Feet |
|--------------------|---------------------|---------|---------|------|-------------------------|
| October            | 340.5               | 91      | 0.2     | 11.0 | 675                     |
| November           | 4.6                 | .3      | .1      | .15  | 9.1                     |
| December           | 4.4                 | .3      | 0       | .14  | 8.7                     |
| January            | 4.7                 | .3      | .1      | .15  | 9.3                     |
| February           | 2.301.6             | 200     | i i i   | 82.2 | 4.570                   |
| March              | 13,400              | 600     | 250     | 432  | 26.580                  |
| April              | 9,275.0             | 681     | 5       | 309  | 18,400                  |
| May                | 6,161.2             | 614     | 2.0     | 199  | 12.220                  |
| June               | 306.2               | 37      | 2.0     | 10.2 | 607                     |
| July               | 130.3               | 25      | .1      | 4.20 | 258                     |
| August             | 393.8               | 26      | 0       | 12.7 | 781                     |
| September          | 380.5               | 24      | .8      | 12.7 | 755                     |
| Water Year 1948-49 | 32,702.8            | 681     | 5       | 89.6 | 64,870                  |

#### RED RIVER OF THE NORTH BASIN Souris River above Minot, N. Dak.

Location.-Water-stage recorder and concrete control, lat. 48°14'45", long. 101° 22'15", near center of sec. 17, T. 155 N., R. 83 W., 3½ miles west of Minot. Datum of gage is 1,545.75 feet above mean sea level, datum of 1929.

Drainage area.-11,300 square miles.

Records available.---May 1903 to March 1924, April 1927 to September 1928, and October 1929 to September 1934 at site at Minot, 10 miles downstream, and October 1934 to September 1949 at present site, in reports of Geological Survey. May 1903 to September 1949 in reports of State Engineer. Records equivalent except those for periods of low flow, when considerable industrial and sanitary waste enters river between the two sites.

Average discharge.---36 years (1913-49), 121 second-feet.

Extremes.-Maximum discharge during year, 2,250 second-fect April 6 (gage height, 16.56 feet, backwater from ice); minimum, 1 second-foot Jan. 20 to Feb. 18.

1903-49: Maximum discharge, 12,000 second-feet Apr. 20, 1904 (gage height, 21.9 feet at site at Minot), from rating curve extended above 8,100 second-feet; no flow at times in many years.

Maximum stage known at present site, about 23 feet in April 1904. Remarks.-Records good except those for periods of ice effect or no gage height record, which are fair. Flow of Souris and Des Lacs Rivers completely regulated by Fish and Wildlife Service dams above station.

| Month              | Second<br>Foot Days | Maximum        | <br>  Minimum | Mean  | Run-off in<br>Acre-Feet |
|--------------------|---------------------|----------------|---------------|-------|-------------------------|
|                    |                     | 1              |               | -     |                         |
| October            | 828.0               | 97             | 9.8           | 26.7  | 1,640                   |
|                    | 390.0               | 20             | 7             | 13.0  | 774                     |
| November           |                     | 1 <sup>2</sup> |               | 3.80  | 234                     |
| December           | 117.8               | 1 7            | 4             |       | <b>.</b>                |
| January            | 50                  |                | 1 · · · [     | 1.6   |                         |
| February           | 1.818               | 200            | 1             | 64.9  | 3,610                   |
|                    | 12.950              | 600            | 200           | 418 1 | 25.690                  |
| March              |                     |                | 265           | 80.9  | 48,150                  |
| April              | 24,275              | 2,200          |               |       | 15,220                  |
| May                | 7,673               | 646            | 45            | 248   |                         |
| June               | 2,032               | 158            | 39            | 67.7  | 4,030                   |
|                    | 728                 | 1 37           | 14            | 23.5  | 1,440                   |
| July               | 457.8               | 31             | 2.3           | 14.8  | 908                     |
| August             |                     |                | 1.8           | 10.7  | 636                     |
| September          | 320.6               | 21             | 1.8           |       | 000                     |
|                    |                     |                |               | 141   | 102,400                 |
| Water Year 1948-49 | 51,640.2            | 2,200          |               | 141   | 102,100                 |

#### **RED RIVER OF THE NORTH BASIN** Souris River near Verendrye, N. Dak.

Location .- Water-stage recorder, lat. 48°09', long. 100°44', in NW1/SW1/4 sec. 17. T. 154 N., R. 78 W., 3 miles northeast of Verendrye and 71/2 miles southwest of (19 miles upstrcam from) mouth of Wintering River. Datum of gage is 1,464.87 feet above mean sea level, datum of 1929.

n see nevel, usually of 1929. Drainage area.—12,200 square miles. Records available.—February to June 1933 (gage heights only), April 1937 to September 1949 (winter records incomplete prior to 1945).

Extremes .- Maximum discharge during year, about 4,200 second-feet Apr. 8 (gage height, 17.7 feet, high water mark, backwater from ice) ; minimum not determined.

1937-49: Maximum discharge, that of Apr. 8, 1949; minimum discharge recorded, 0.3 second-foot Aug. 11-19, 1937, Oct. 10-21, 1939.

Remarks .-- Records good except those for Apr. 6-26, Sept. 15-30, which are fair, and those for Dec. 1 to Apr. 5, which are poor. Flow regulated by Fish and Wildlife Service dams on Souris and Des Lacs Rivers.

| Month              | Second<br>Foot Days | Maximum | Minimum | Mean  | Run-off in<br>Acre-Feet |
|--------------------|---------------------|---------|---------|-------|-------------------------|
|                    |                     |         |         |       |                         |
| October            | 1,448               | 97      | 21      | 46.7  | 2,870                   |
| November           | 830                 | 38      | 16      | 27.7  | 1,650                   |
| December           | 268                 | 15      | 5       | 8.6   | 532                     |
| January            | 219                 | 15      | 4       | 7.1   | 434                     |
| February           | 84                  |         |         | 3     | 167                     |
| March              | 10.510              | 500     | 5       | 339   | 20,850                  |
| April              | 43,154              | 4,000   | 500     | 1,438 | 85,590                  |
| May                | 10,426              | 599     | 104     | 336   | 20,680                  |
| June               | 4,164               | 342     | 80      | 139   | 8,260                   |
| July               | 1.591               | 76      | 35      | 51.3  | 3,160                   |
| August             | 993                 | 52      | 15      | 32.0  | 1,970                   |
| September          | 515                 | 24      | 14      | 17.2  | 1,020                   |
| Water Year 1948-49 | 74,202              | 4,000   | I I     | 203   | 147,200                 |

#### **RED RIVER OF THE NORTH BASIN** Souris River near Bantry, N. Dak.

Location.-Water-stage recorder, lat. 48°30', long. 100° 45', in SE'4 sec. 14, T. 158 N., R. 76 W., 8 miles east of Bantry. Drainage area.-13,400 square miles.

Records available .- March 1937 to September 1949 (no winter records prior to 1945)

Extremes: --- Maximum discharge during year, 4,760 second-feet Apr. 10 (gage height, 13.76 feet, high water mark); minimum not determined; minimum gage height, 1.03

feet Spitz 26, 27. 1937-49: Maximum discharge, that of Apr. 10, 1949; no flow at times in each

Remarks .- Records good except those for Apr. 6-11, June 19-28, Aug. 2-17, Aug. 28 to Sept. 7, which are fair, and those for Nov. 2 to Apr. 5, which are poor. Water diverted for irrigation at Eaton Dam about 42 miles above station. Flow regulated by Fish and Wildlife Service dams on Souris and Des Lacs Rivers.

| Month              | Second<br>Foot Days | Maximum | Minimum | Mean  | Run-off in<br>Acre-Feet |
|--------------------|---------------------|---------|---------|-------|-------------------------|
| October            | 2,290               | 106     | 47      | 73.9  | 4,540                   |
| November           | 1,378               | 65      | 25      | 45.9  | 2,730                   |
| December           | 463                 | 25      | 8       | 14.9  | 918                     |
| January            | 289                 | 15      | 6       | 9.3   | 573                     |
| February           | 144                 |         |         | 5.10  | 286                     |
| March              | 7,244               | 500     | 5 1     | 234   | 14.370                  |
| April              | 57,420              | 4.560   | 500 1   | 1.914 | 113,900                 |
| May                | 18,767              | 1,230   | 198     | 605   | 37,220                  |
| June               | 7,160               | 440     | 116     | 239   | 14.200                  |
| July               | 2,334               | 109     | 54      | 75.3  | 4.530                   |
| August             | 1,227               | 60      | 21      | 39.6  | 2,430                   |
| September          | 599                 | 40      | 12      | 20.0  | 1,190                   |
| Water Year 1948-49 | 99,315              | 4,560   | 1       | 272   | 197.000                 |

#### **RED RIVER OF THE NORTH BASIN** Souris River near Westhope, N. Dak. (International gaging station)

Location .--- Water-stage recorder and concrete control, lat. 49°00', long. 100°57', in SW<sup>1</sup>/<sub>4</sub>SE<sup>1</sup>/<sub>4</sub> sec. 30, T. 164 N., R. 79 W., 1,200 feet upstream from International Boundary, 1 mile downstream from Fish and Wildlife Service dam 357, and 7 miles northeast of Westhope. Datum of gage is 1,401.74 feet above mean sea level, datum of 1929.

Drainage area.-17,600 square miles.

Records available.-October 1937 to September 1949. July 1929 to September 1937, at site 6¼ miles upstream.

Average discharge.-14 years (1935-49), 145 second-feet.

Extrage unstanger discharge during year, 6,400 second-feet Apr. 18, maximum gage height, 16.9 feet (floodmark) Apr. 20; minimum discharge, 7 second-feet Mar. 11-25, minimum gage-height, 5.24 feet July 15, 16.

1929-49: Maximum discharge, that of Apr. 18, 1949; maximum gage height, that of Apr. 20, 1949; no flow during several periods.

Remarks .- Records fair. Flow regulated by Fish and Wildlife Service dams on Souris and Des Lacs Rivers.

Cooperation .- This station is one of the international gaging stations maintained by the United States under agreement with Canada.

| Month              | Second<br>Foot Days | Maximum | Minimum | Mean   | Run-off in<br>Acre-Feet |
|--------------------|---------------------|---------|---------|--------|-------------------------|
| October            | 618                 | 30      | 17      | 19.9   | 1.990                   |
| November           | 1,409               | 1 80 1  | 10      | 47.0   | 1,230                   |
| December           | 2.065               | 80      | 50      | 66.6   | 2,790                   |
| January            | 1.000               | 50      | 20      | 32.3   | 4,100                   |
| February           | 377                 | 18      | 20      | 13.5   | 1,980                   |
| March              | 233                 | 8       | 7       | 7.5    | 748                     |
| April              | 96,696              | 6.300   | á       | 3,223  | 462                     |
| May                | 45.143              | 3.400   | 550     | 1,456  | 191,800                 |
| June               | 18.374              | 900     | 345     | 612    | 89,540                  |
| July               | 1.221.5             | 247     | 9.5     | 39.4 i | 36,440                  |
| August             | 1.224               | 44      | 36      | 39.4   | 2,420                   |
| September          | 971                 | 38      | 18      | 32.4   | $2,430 \\ 1,930$        |
| Water Year 1948-49 | 169,331.5           | 6,300   | 7       | 464    | 335,900                 |

### **RED RIVER OF THE NORTH BASIN** Long Creek near Crosby, N. Dak.

Location.--Wire-weight gage, lat. 48°58'30", long. 103°15'40", in NW14 sec. 3, T. 163 N., R. 97 W., on county highway bridge 5 miles northeast of Crosby.

Records available .--- March to April 1943, April 1944 to September 1949. Extremes.-Maximum discharge during year, about 500 second-feet Apr. 3; maximum gage height, 10.5 fect Apr. 1 (affected by ice); no flow during several months.

1943-49; Maximum discharge, 6,240 second-feet Apr. 23, 1948; maximum gage height, 16.10 feet Apr. 22, 23, 1948; no flow during part of each year.

Remarks .- Records fair. Gage read once daily.

| Month              | Second<br>Foot Days | Maximum | <br>  Minimum    | Mean | Run-off in<br>Acre-Feet |
|--------------------|---------------------|---------|------------------|------|-------------------------|
|                    |                     | 1       |                  |      |                         |
| October            | 0                   | 0       | 0 1              | 0    | Ū,                      |
| November           | 1.3                 | .2      | 0                | .04  | 2.                      |
| December           | 1.6                 | i .6    | i 0 1            | .05  | 3.                      |
|                    | 0                   | 0       | i 0 <sup>i</sup> | 0 1  | 0                       |
| January            | ň                   | i õ     | i 0 1            | 0    | 0                       |
| February           | 252                 | 200     | i o i            | 8.1  | 5.00                    |
| March              | 3.883               | 480     | 15               | 129  | 7,700                   |
| April              | 197.3               | 14      | .8               | 6.36 | 391                     |
| May                |                     | 1 11    | 1 1              | 2.32 | 138                     |
| June               | 69.5                | 1 11    |                  | 0.02 | 100                     |
| July               | 0                   |         |                  | N I  | ň                       |
| August             | 0                   | l Ö     |                  | V I  | Ň                       |
| September          | 0                   | 0       | 1 0 1            |      |                         |
| Water Year 1948-49 | 4,404.7             | 480     | 1 0              | 12.1 | 8,730                   |

#### RED RIVER OF THE NORTH BASIN Des Lacs River at Foxholm, N. Dak.

Location .--- Water-stage recorder, lat. 48°22', long. 101°34', in NW14 sec. 2, T. 156 N., R. 85 W., at county highway bridge in Foxholm. Datum of gage is 1,632,98 feet above mean sea level, datum of 1929. Prior to Aug. 31, 1948, staff gage at same site and datum.

Drainage area.-973 square miles.

Records available .-- June 1904 to July 1906, October 1945 to September 1949.

Extremes .- Maximum discharge during year, 2,000 second-feet Apr. 4 (gage height, 18.04 feet, backwater from ice); minimum not determined.

1904-6, 1945-49: Maximum discharge, that of Apr. 4, 1949; no flow at times in most years.

Flood in June 1944 reached a stage of 19.0 feet, from floodmarks.

Remarks .--- Records fair.

| Month              | Second<br>Foot Days | Maximum | Minimum | Mean | Run-off in<br>Acre-Feet |
|--------------------|---------------------|---------|---------|------|-------------------------|
|                    |                     | 1       | 1       |      |                         |
|                    | 289.5               | 15      | 4.5     | 9.34 | 574                     |
| October            |                     | i ii    | 4.5     | 6.89 | 410                     |
| November           | 206.6               |         | .8      | 2.20 | 135                     |
| December           | 68.2                | 5.2     |         |      | 16                      |
| January            | 8.1                 | .5      | .1      | .26  |                         |
| February           | 2.8                 | 1       | 1 '     | .1   | 5.0                     |
|                    | 5.0                 | 1 1     | 1       | .16  | 9.1                     |
| March              | 10,822              | 1.800   | 5       | 361  | 21.470                  |
| April              |                     |         | 19      | 43.2 | 2,660                   |
| May                | 1,340               | 63      |         |      | 2,550                   |
| June               | 1,284               | 76      | 30      | 42.8 |                         |
| July               | 530.8               | 25      | 9.8     | 17.1 | 1,050                   |
|                    | 127.9               | 10      | 1.2     | 4.13 | 254                     |
| August             | 23.1                | 1.5     | .4      | .77  | 46                      |
| September          | 43.1                | 1 1.0   | 1 1     |      |                         |
| Water Year 1948-49 | 14,708.0            | 1,800   |         | 40.3 | 29,180                  |

#### **RED RIVER OF THE NORTH BASIN** Wintering River near Karlsruhe, N. Dak.

Location.—Water-stage recorder and concrete control, lat. 48°10', long. 100°32', on line between secs. 10 and 11, T. 154 N., R. 77 W., 80 feet upstream from highway bridge, 4 miles upstream from mouth, and 7 miles northeast of Karlsruhe.

Drainage area.-675 square miles.

Records available.—March 1937 to September 1949 (no winter records prior to 1945).

Extremes.—Maximum discharge during year, 3,000 second-feet Apr. 7; maximum gage height, 12.0 feet Apr. 7 (affected by ice); no flow Jan. 16 to Feb. 28.

1937-49: Maximum discharge, that of Apr. 7, 1949; maximum gage height, that of Apr. 7, 1949; no flow at times in many years.

Remarks .-- Records fair except those for period of ice effect, which are poor.

| Month              | Second<br>Foot Days | Maximum | Minimum | Mean | Run-off in<br>Acre-Feet |
|--------------------|---------------------|---------|---------|------|-------------------------|
| October            | 131.8               | 7.6     | 2.9     | 4.25 | 261                     |
| November           | 155.0               | 7.6     | 4       | 5.17 | 307                     |
| December           | 49.8                | 4       | .6      | 1.61 | 99                      |
| January            | 3.9                 | .5      | 0.01    | .13  | Ť.7                     |
| February           | Ő                   | 0       | ŏ       | 0    |                         |
| March              | 3.1                 |         | i       | .1   | <b>6.1</b>              |
| April              | 11.591.7            | 2,500   | .1      | 386  | 22,990                  |
| Мау                | 834                 | 67      | 15      | 26.9 | 1,650                   |
| June               | 420.8               | 36      | -9.0 i  | 14.0 | 835                     |
| July               | 176.5               | 7.9     | 4.5     | 5.69 | 350                     |
| August             | 84.0                | 4.0     | 2.1     | 2.71 | 167                     |
| September          | 88.5                | 3.6     | 2.2     | 2.95 | 176                     |
| Water Year 1948-49 | 13,539.1            | 2,500   | 0       | 37.1 | 26,850                  |

#### RED RIVER OF THE NORTH BASIN Devils Lake near Devils Lake, N. Dak.

Location.—Temporary staff gage, lat. 48°03'45", long. 98°56'30", in SW14 sec. 18, T. 153 N., R. 64 W., at Lakewood, on east bank at mouth of Creel Bay and 6 miles southwest of city of Devils Lake. Creel Bay, which is half a mile wide, is an arm of Devils Lake and extends 2 miles to the north of the lake. Datum of present gage is 1,400.00 feet above mean sea level, datum of 1922.

Drainage area .--- 3,940 square miles (including lake surface).

Records available.—1867, 1879, 1883, 1887, 1890, 1896 (one gage height for each year) and 1901-48 (fragmentary).

Extremes.—1867-1948: Maximum elevation observed, 1,438.40 feet in 1867, present datum; minimum observed, 1,400.87 feet Oct. 24, 1940.

**Remarks.**—Elevations of lake determined from temporary gage. To refer elevations obtained during period 1867 to 1938 to datum of 1929, subtract 0.56 foot.

| Elevation, in feet, 1947-48 | Elevation. | . in fe | et. 194 | 47-48 |
|-----------------------------|------------|---------|---------|-------|
|-----------------------------|------------|---------|---------|-------|

|         | 1947 |         | 19                          | 948                             | 19                  | 48                 |
|---------|------|---------|-----------------------------|---------------------------------|---------------------|--------------------|
| Oct. 13 |      | 1402.98 | June 11<br>July 3<br>Aug. 2 | $1405.25 \\ 1405.22 \\ 1404.97$ | Aug. 31<br>Sept. 28 | 1404.65<br>1404.44 |

#### RED RIVER OF THE NORTH BASIN Devils Lake near Devils Lake, N. Dak.

Location.—Temporary staff gage, lat. 48°03'45", long. 98°56'30", in SW¼ sec. 18. T. 153 N., R. 64 W., at Lakewood, on east bank at mouth of Creel Bay and 6 miles southwest of city of Devils Lake. Creel Bay, which is half a mile wide, is an arm of Devils Lake and extends 2 miles to the north of the lake. Elevations are referred to mean see level, datum of 1929.

Drainage area.-3,940 square miles (including lake surface).

Records available.---1867, 1879, 1883, 1887, 1890, 1896 (one gage height for each year) and 1901-49 (fragmentary).

Extremes.---1867-1949: Maximum elevation observed, 1,438.40 feet in 1867, present datum; minimum observed, 1,400.87 feet Oct. 24, 1940.

**Remarks.**—Elevations of lake determined from temporary gage. To refer elevations obtained during period 1867 to 1938 to datum of 1929, subtract 0.56 foot.

| Oct. 2 1404.22 May 26 1405.88 Aug. 22 1406.<br>Oct. 24 1404.17 June 4 1406.26 Aug. 31 1406.<br>June 17 1406.58 Sept. 14 1406.<br>June 28 1406.88 Sept. 25 1406.<br>July 9 1407.20<br>July 16 1407.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |         |                                                                        |                                                                |                                |                                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------|------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------|------------------------------------------------------------------|
| Oct.         1404.37         May 10         1405.58         Aug.         9         1407.           Oct.         17         1404.22         May 26         1405.88         Aug.         22         1406.           Oct.         17         1404.22         May 26         1405.88         Aug.         22         1406.           Oct.         24         1404.17         June 4         1406.26         Aug.         31         1406.           June 17         1406.58         Sept.         14         1406.         June 28         1406.88         Sept.         14         1406.           June 28         1406.88         Sept.         25         1406.         July 9         1407.20         July 16         1407.25         1406.         1407.25         1407.25         1407.25         1407.25         1407.25         1407.25         1407.25         1407.25         1407.25         1407.25         1407.25         1407.25         1407.25         1407.25         1407.25         1407.25         1407.25         1407.25         1407.25         1407.25         1407.25         1407.25         1407.25         1407.25         1407.25         1407.25         1407.25         1407.25         1407.25         1407.25         1407. |                   |         |                                                                        |                                                                | 10.                            | 40                                                               |
| Oct.         2         1404.37         May 10         1405.58         Aug. 9         1407.           Oct.         17         1404.22         May 26         1405.88         Aug. 22         1406.           Oct.         24         1404.17         June 4         1406.26         Aug. 31         1406.           June 17         1406.58         Sept. 14         1406.         June 28         1406.88         Sept. 25         1406.           July 9         1407.20         July 16         1407.25         1407.25         1407.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1948              |         | 194                                                                    | 19                                                             | 194                            | 19                                                               |
| July 10 11011-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Oct. 2<br>Oct. 17 | 1404.22 | May 26<br>June 4<br>June 17<br>June 28<br>July 9<br>July 16<br>July 29 | 1405.88<br>1406.26<br>1406.58<br>1406.88<br>1406.88<br>1407.20 | Aug. 22<br>Aug. 31<br>Sept. 14 | $1407.02 \\ 1406.89 \\ 1406.77 \\ 1406.57 \\ 1406.57 \\ 1406.42$ |

Note .-- Readings other than those shown above were made.

### RED RIVER OF THE NORTH BASIN Lake Darling near Foxholm, N. Dak.

Location.—Staff gage, lat. 48°27', long. 101°35', in NE¼NE¼ sec. 1, T. 157 N., R. 85 W., on control dam of Lake Darling, reservoir of Fish and Wildlife Service on Souris River, about 6 miles north of Foxholm. Datum of gage is 1,577.00 feet above mean sea level (Fish and Wildlife Service bench mark).

Records available .- April 1937 to September 1949.

Extremes.—Maximum gage height observed during year, 18.40 feet Apr. 19, 22; minimum observed, 12.21 feet Mar. 31, Apr. 4.

1937-49: Maximum gage height observed, 22.83 feet Apr. 23, 24, 1943; minimum observed, 1.53 feet Mar. 1, 1938.

Remarks.—Reservoir is formed by concrete dam; storage began in April 1936; dam completed in July 1936. Capacity 128,500 acre-fect between gage heights 0.0 foot (sill of control gates) and 23.0 feet (top of 2-foot flashboards). Dead storage 3,500 acrefeet. Water is used during periods of low flow at wildlife refuges downstream. Gage read from 1 to 15 times per month.

Cooperation .--- Gage height record furnished by Fish and Wildlife Service.

| Date                                      | Gage-height<br>(feet) | Contents<br>(acre-feet)              | Change in Content<br>during mo. or year<br>(acre-feet) |
|-------------------------------------------|-----------------------|--------------------------------------|--------------------------------------------------------|
| Sept. 30<br>Oct. 31<br>Nov. 30<br>Dec. 31 |                       | 75,200<br>72,800<br>73,800<br>73,800 | -2,400<br>+1,000<br>0                                  |
| Calendar year 1948                        |                       |                                      |                                                        |
| Jan. 31<br>Feb. 28<br>Mar. 31             | 12.21                 | 73,800<br>72,800<br>41,300           | $-1,000 \\31,500$                                      |
| Apr. 30<br>May 31<br>June 30              |                       | 84,700<br>79,400<br>82,000<br>80,400 | +43,400<br>5,300<br>+2,600<br>1,600                    |
|                                           |                       | i 77,700                             | -2.700                                                 |
| July 31<br>Aug. 31<br>Sept. 30            | 17.26<br>16.70        | 73,000                               | 4,700                                                  |

# North Dakota Research Foundation GEOGRAPHICAL DATA CONCERNING NORTH DAKOTA By Alex Burr

# I. Boundary Lines (to nearest tenth mile).

- A. North-310.0 miles-Approximately the 49° parallel.
- B. East-213.5 miles-air-line-river boundary approximately 416 miles.
- C. South-360.6 miles-7th Standard parallel.
- D. West-210.8 miles-27th Standard meridian.

# II. Boundary Corners (to nearest second of latitude or longitude).

- A. Northeast-49° 00' 02" N. Lat.; 97° 13' 41" W. Long.
- B. Southeast-45° 56' 07" N. Lat.; 96° 33' 41" W. Long.
- C. Southwest-45° 56' 43" N. Lat.; 104° 02' 17" W. Long.
- D. Northwest-49° 00' 00" N. Lat.; 104° 02' 53" W. Long.

### III. Areas

- - 2. Water area ...... 611 Square Miles
- B. Of Basins (Based on line of Bureau of Reclamation)
  - 1. Red-Souris-Devils Lake to Hudson's Bay 29,500 Square Miles (Approximately)

2. Missouri to Gulf of Mexico ...... 41,200 Square Miles (Approximately)

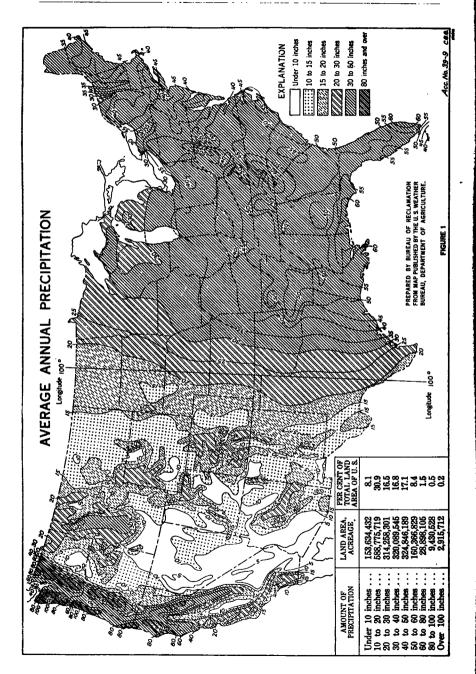
# DRAINAGE BASIN AREAS—NORTH DAKOTA (Approximate areas in square miles)

| . Huo | lson Bay Drainage Basin     |                                       |     |     |     |        |         |
|-------|-----------------------------|---------------------------------------|-----|-----|-----|--------|---------|
| a.    | Devils Lake                 | 3,450                                 | sa. | mi. | 5%  |        |         |
| ь.    | Lower Red River             | 7.850                                 |     | **  | 11% |        |         |
| c.    | Sheyenne River              | 7.350                                 |     | ,,  | 10% |        |         |
| d.    | Souris River                | 8.550                                 |     | "   | 12% |        |         |
| e.    |                             | 2,050                                 | ,,  | ,,  | 3%  |        |         |
|       |                             |                                       |     |     | 41% | 29,250 | sa. mi. |
|       | ssouri River Drainage Basin |                                       |     |     | ,.  |        |         |
| а.    | Cannonball River            | 4,550                                 | sa. | mi. | 7%  |        |         |
| b.    | Grand River                 | 950                                   |     | ,,  | 1%  |        |         |
| c.    | Heart River                 | 3.150                                 | "   | ,,  | 4%  |        |         |
| d.    |                             |                                       |     | ,,  | 10% |        |         |
| e,    | Knife River                 | 2.600                                 | ,,  | ,,  | 4%  |        |         |
| f.    | Little Missouri River       | 4.650                                 | ••  | ,,  | 7%  |        |         |
|       | Missouri River (main stem)  |                                       | **  | ,,  | 25% |        |         |
| ĥ.    | Yellowstone River           | 600                                   | "   | ••  | 1%  |        |         |
|       | -                           |                                       |     |     | 59% | 41,400 |         |
| •     | TOTAL                       | · · · · · · · · · · · · · · · · · · · |     |     |     | 70,650 |         |
|       |                             |                                       |     |     |     |        |         |

# MOTOR FUELS AND OILS FROM LIGNITE

Laboratory tests at the North Dakota State University chemical department, working in cooperation with the University of Minnesota, had proved that motor fuels and oils can be produced from lignite coal, of which it is estimated that western North Dakota has six billion tons. The decreasing production of motor fuels and oils, with threatened ration-

# STATE OF NORTH DAKOTA


ing during times of emergency, and the great need of larger production in case of war, induced Congress to authorize funds for the construction of a \$750,000 laboratory at the State University of North Dakota to continue making investigations, studies and tests of lignite coal on a commercial basis, as a practical demonstration to encourage commercial plants of the feasibility of producing byproducts of lignite coal at a profit. Large oil companies have been and are experimenting in synthetic fuels and oils produced from natural gas and coal. In North Dakota the Lehigh Briquetting Plant furnished an oil extracted in the briquetting process from lignite coal, to make a test run of a Diesel-powered train during the summer of 1950. The test proved very satisfactory.

# Millions of Tons of Lignite Stored at the Garrison Dam

In excavating for the eight tunnels and spillway section at the Garrison dam army engineers estimate that close to four million tons of lignite coal would be removed. Only a very small percentage of this may be used in the dam embankment. The major portion is stored in large stock piles where it will be available for use to state and private institutions and in conducting tests in the University lignite laboratory and in the heating plant at Riverdale.



161

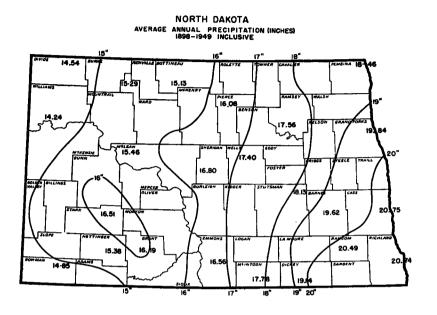


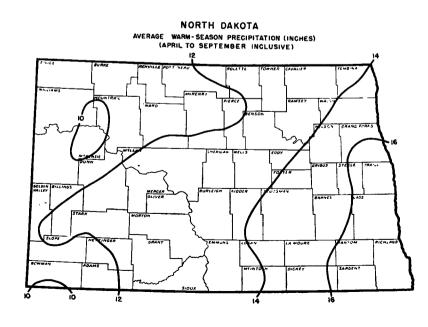
# UNITED STATES WEATHER BUREAU

# F. J. Bavendick, State Meteorologist

As of 1950 there are four first order Weather Bureau stations in North Dakota and **Six** Airway stations, all rendering 24 hour service. There are also **1960** cooperative weather observers in North Dakota, supervised by the Bismarck office. One hundred of these cooperative weather observers take daily readings, recording the high and low temperatures, 24-hour precipitation, sky condition and wind. The others record only precipitation. Observers are scattered over the state, usually two or three to the county. They receive no pay for their work, but there are many public-spirited citizens interested in the weather in all counties so that little difficulty is experienced in finding efficient observers. Beginning with July, 1948, weather records were put on punch cards with International Business machines. With this method, much more data are available with less work.

There are also records kept from more than 100 rain gages owned by state agencies, individuals, companies and federal agencies. About 35 of the cooperative observers have recording gages which indicate the time and rate of fall besides the amount. The rate of fall is important for determining the run-off per hour. One-half an inch of rain falling slowly over a period of six hours is worth more to the state than an inch that falls in an hour. Fortunately, rainfalls of more than one inch per hour occur only twice in the average year in North Dakota. The recording gages were installed in cooperation with the U. S. Reclamation Bureau and the Corps of Army Engineers.


Evaporation stations are in operation at Dickinson, Mandan and Riverdale. Such stations will also be installed at Bowbells, Devils Lake and Edgeley during 1950.


The first weather records in North Dakota were made by Lewis & Clark in 1804-5. The army began regular observations in 1860, but a good distribution of stations was not secured until 1892 when 40 were in operation. Complete records for more than 60 years are available to the public and they include precipitation, temperature, sunshine, wind, humidity, state of the sky, etc. Records made to a distance of 12 miles above the earth's surface by means of recording instruments sent up by helium filled balloons are also available. Weather maps showing weather conditions in all parts of the United States are drawn four times daily and forecasts are issued every six hours.

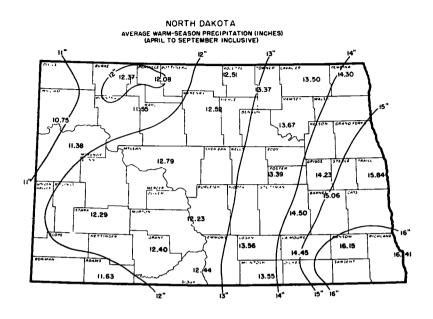
In an examination of North Dakota weather records for the past seventy-five years, there is found no evidence of any progressive change in temperature or in the amount of rain and snow, an outstanding period of extremes occurred between 1936 and 1945. During this decade, North

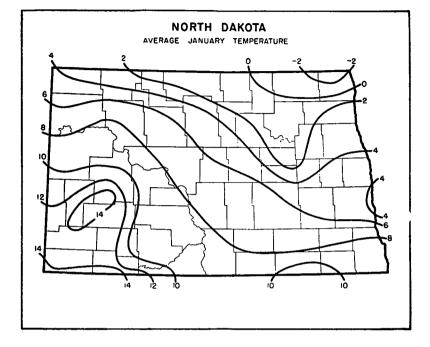
1. . ..

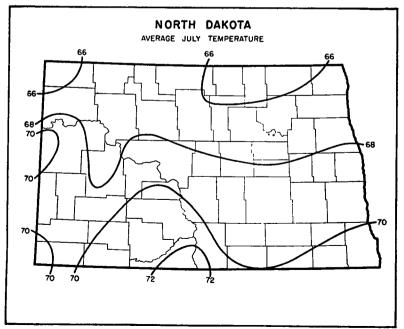
### STATE OF NORTH DAKOTA



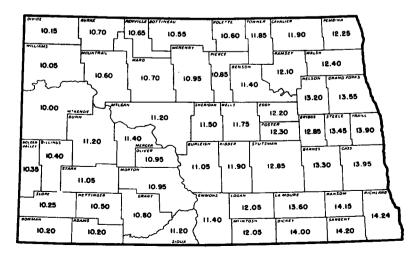



Dakota experienced its highest and lowest temperatures and its driest and wettest years.

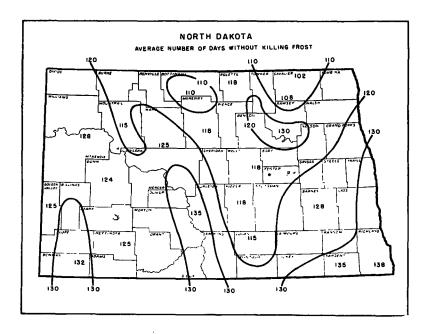

It will require many more years of records in the center of the North American continent before a good knowledge of our weather is available. Much unusual weather has already been experienced in North Dakota in 1950. Nearly twice the normal amount of snow fell in January and March, and three times the normal fell in April. Little or no melting occurred during the unusually cold winter with the result that more flooding occurred in April and May than in any previous year.

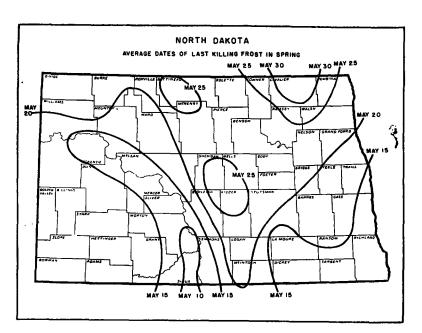

Climate is a natural resource that cannot be exhausted by exploitation as in the case with most natural resources such as soils, forests and mines. As civilization has become more complex, our dependence upon an intimate knowledge of climate and weather has increased. Today this knowledge is so indispensable that every civilized country has an extensive weather service. While it is impossible for man to change the climate materially, it is possible for him to plan his activities in such a manner that he wll realize the maximum benefit from the forces of nature.

"Climate and Weather in North Dakota," prepared by Meteorologist Frank J. Bavendick and published by the State Water Conservation Commission, contains a digest of records for seventy-five years. It notes unusual and unfavorable weather conditions to prepare residents for possible recurrence in future years. This booklet contains a wealth of information of the vagaries of North Dakota weather, includes floods, blizzards, drought, dust storms, hail, precipitation, snowfall, sunshine, etc. A charge of \$1. is made to cover a part of the cost. The first issue of 1,000 was exhausted and a second issue printed to meet the demand.


Rainfall has been above normal for seven out of the past 10 years, and need for irrigation has not been so apparent, and dry-farming methods have been satisfactory. However, Weather Bureau records for the past 75 years indicate that on the average six out of 11 years have had insufficient rainfall to produce a paying crop in Western North Dakota. The only other long period of continued good moisture supply during the 75 years recorded was in 1899 to 1904. A drouth preceded and followed this period, hence it seems safe to conclude that this area is approaching a period of drouth years.



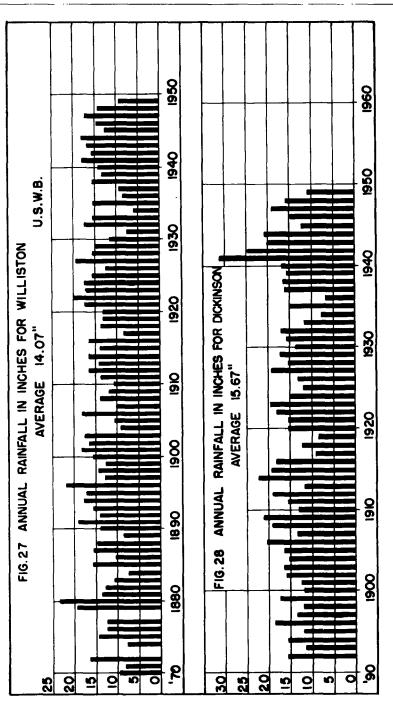


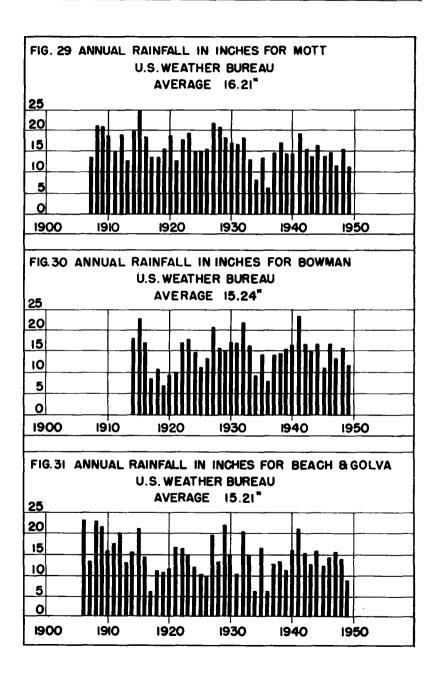

#### NORTH DAKOTA AVERAGE PRECIPITATION BY COUNTIES APRIL-AUGUST INCLUSIVE (1898-1949)

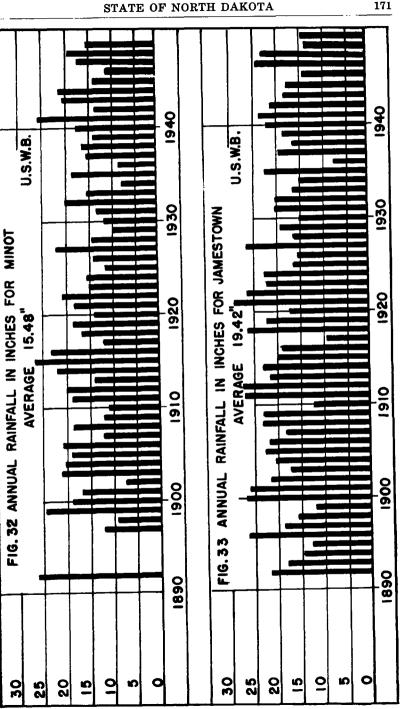


алан (1993) 1990 - Полон (1993) 1990 - Полон (1993) 1990 - Полон (1993) 1990 - Полон (1993) 1990 - Полон (1993) 1990 - Полон (1993) 1990 - Полон (1993) 1990 - Полон (1993) 1990 - Полон (1993) 1990 - Полон (1993) 1990 - Полон (1993) 1990 - Полон (1993) 1990 - Полон (1993) 1990 - Полон (1993) 1990 - Полон (1993) 1990 - Полон (1993) 1990 - Полон (1993) 1990 - Полон (1993) 1990 - Полон (1993) 1990 - Полон (1993) 1990 - Полон (1993) 1990 - Полон (1993) 1990 - Полон (1993) 1990 - Полон (1993) 1990 - Полон (1993) 1990 - Полон (1993) 1990 - Полон (1993) 1990 - Полон (1993) 1990 - Полон (1993) 1990 - Полон (1993) 1990 - Полон (1993) 1990 - Полон (1993) 1990 - Полон (1993) 1990 - Полон (1993) 1990 - Полон (1993) 1990 - Полон (1993) 1990 - Полон (1993) 1990 - Полон (1993) 1990 - Полон (1993) 1990 - Полон (1993) 1990 - Полон (1993) 1990 - Полон (1993) 1990 - Полон (1993) 1990 - Полон (1993) 1990 - Полон (1993) 1990 - Полон (1993) 1990 - Полон (1993) 1990 - Полон (1993) 1990 - Полон (1993) 1990 - Полон (1993) 1990 - Полон (1993) 1990 - Полон (1993) 1990 - Полон (1993) 1990 - Полон (1993) 1990 - Полон (1993) 1990 - Полон (1993) 1990 - Полон (1993) 1990 - Полон (1993) 1990 - Полон (1993) 1990 - Полон (1993) 1990 - Полон (1993) 1990 - Полон (1993) 1990 - Полон (1993) 1990 - Полон (1993) 1990 - Полон (1993) 1990 - Полон (1993) 1990 - Полон (1993) 1990 - Полон (1993) 1990 - Полон (1993) 1990 - Полон (1993) 1990 - Полон (1993) 1990 - Полон (1993) 1990 - Полон (1993) 1990 - Полон (1993) 1990 - Полон (1993) 1990 - Полон (1993) 1990 - Полон (1993) 1990 - Полон (1993) 1990 - Полон (1993) 1990 - Полон (1993) 1990 - Полон (1993) 1990 - Полон (1993) 1990 - Полон (1993) 1990 - Полон (1993) 1990 - Полон (1993) 1990 - Полон (1993) 1990 - Полон (1993) 1990 - Полон (1993) 1990 - Полон (1993) 1990 - Полон (1993) 1990 - Полон (1993) 1990 - Полон (1993) 1990 - Полон (1993) 1990 - Полон (1993) 1990 - Полон (1993) 1990 - Полон (1993) 1990 - Полон (1993) 1990 - Полон (1993) 1990 - Полон (1990) 1990 - Полон (1990) 1990 - Полон (1990) 1990 - Полон

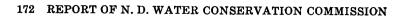


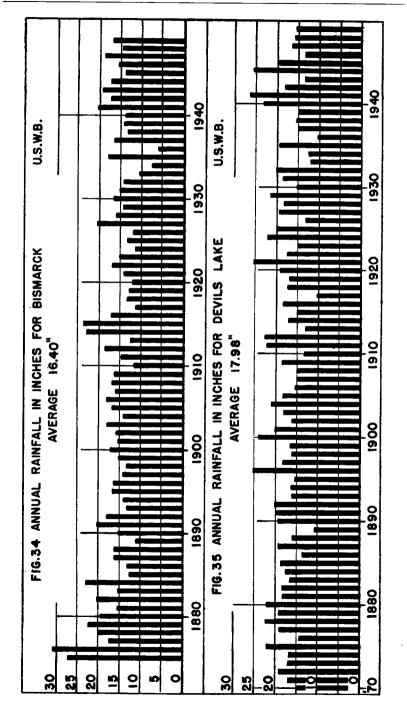




4.

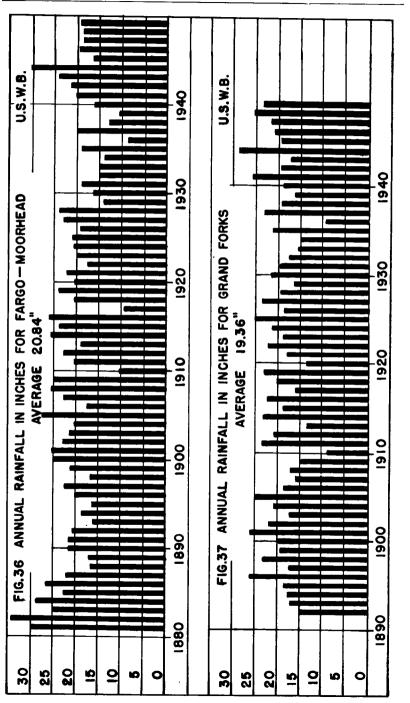

1

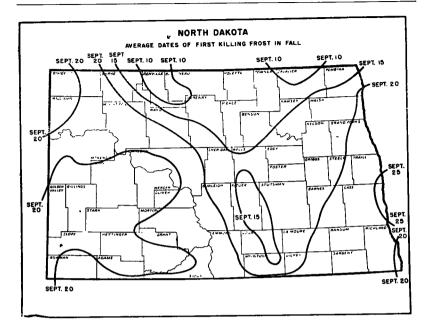
•





STATE OF NORTH DAKOTA







171











### RURAL ELECTRIFICATION IN NORTH DAKOTA

Rural Electrification made remarkable gains in North Dakota during the period from July 1, 1948, to June 30, 1950. The two preceding years had seen unprecedented growth with the aid of government REA loans.

In the State of North Dakota up to 1936 only 1,968 farms had electricity. By June 30, 1949, this had increased through REA organizations to 25,384, and an estimated 44,186 farms were without electric energy. By March 31, 1950, the last available figures, additional loans to REA organizations had been approved which would bring electricity to a total of 60.593 rural consumers.

In the mean time, the monthly average farm consumption on REA lines in North Dakota had increased from 91 kilowat hours in December, 1941, to 178 kilowat hours in December, 1949. This reflects the greater use of electrical equipment to save time and labor in performing farm and household tasks and to bring about a more comfortable rural living condition. The national average was 141 kwh, indicates that North Dakotans were making more than the average use of the electric energy when available.

Government REA loans are made for the full cost of constructing power lines and other electrical facilities to serve rural areas, with 2 per cent interest, and are repaid over a maximum period of 35 years, out of the monthly revenues. Part of each consumer's monthly payment for electricity goes to pay off the government loans.

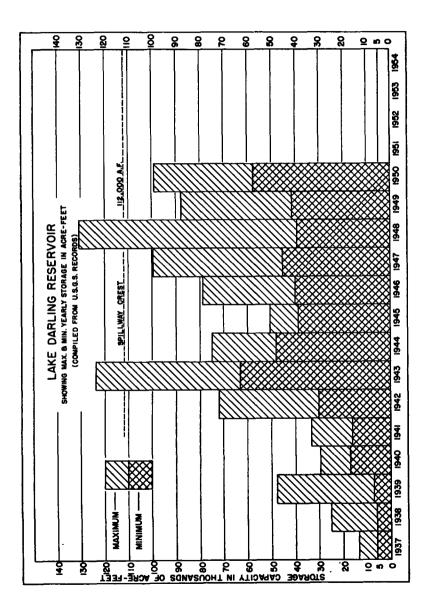
# STATE OF NORTH DAKOTA

# INDUSTRIAL DEVELOPMENT IN NORTH DAKOTA

There will be a great demand for low cost power from the Garrison dam plant from industrial firms, for manufacturing and processing plants for products grown and raised in North Dakota, for chemical plants and in the development and manufacture of lignite coal byproducts.

The North Dakota Research Foundation is aiding in this development and reports that the following eight industries have been established to process North Dakota materials, and are well distributed over the state. They involve the processing of both agricultural and mineral raw materials, including potatoes, flax, alfalfa, sodium sulphate and lignite.

One is a flax crushing plant, state-owned and operated. The others, dealing with lignite and sodium sulphate, are financed by out-of-state money. The other five are financed by private capital within the state. The total investment is conservatively estimated at \$365,000. Employment is provided for 74 people. Wages paid amount to \$175,000 per year. The value of the raw materials processed per year is estimated at \$425,000. The value of the processed products manufactured by these plants is estimated at \$850,000.


### POPULATION TRENDS IN NORTH DAKOTA

The 1950 census is showing a loss of population in the last ten years in North Dakota for many communities and counties, and for the state as a whole. This trend began during the drouth of the thirties when more than 50,000 people moved to other areas of the United States where they could make a living. This loss has never been regained.

A still further loss of population showing up in the 1950 census is attributed to the change to tractor farming and the trend toward larger sized farms to enable the farmer to keep his power machinery busy for as long a period as possible during the cropping season, and thus spread the cost of operation over more acres. The result is that in many counties the average size farm has increased to about a section of land per family.

It is commonly estimated that about one acre in ten of the cultivated land will be under irrigation in possibly ten years, and that this will mean an increase of population in the irrigated areas; that this will require three to four families per section of land as compared to one family under dryland tractor farming.

This would mean an increase of population in the areas which will be irrigated, both rural and urban. Also, the fact that even in the most severe drouth years, there will always be feed available on the irrigated areas within easy trucking distance for most farmers to enable them to make livestock and dairying the base of their farm program, with sufficient income to pay expense of operation and maintain the family on the most severe drouths.



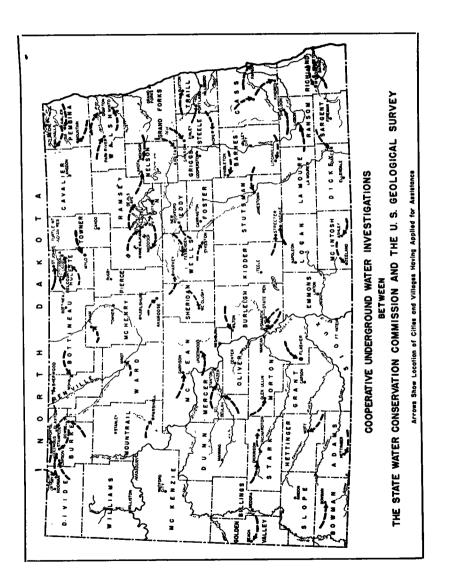
# STATE OF NORTH DAKOTA

# **U. S. FISH AND WILDLIFE SERVICE**

The first area established in North Dakota as a National Wildlife Refuge was Stump Lake which is 27 acres in area and was established by Presidential Proclamation on March 9, 1905. Chase Lake was the next area to be established. It consisted of 375 acres and was established by Presidential Proclamation on August 28, 1908. On March 3, 1931 the Sullys Hill Game Preserve was established being an area of 994 acres.

Since that time many new areas have been added and at present the Service administers approximately 173,000 acres of Government-owned land in North Dakota as National Wildlife Refuges and in addition to sizeable acreage is under its administration as Refuge areas under easements from the land owners.

Aside from the Sullys Hill Game Preserve, which was established mainly to preserve a small native herd of buffalo before this species became extinct in the State, the Refuges in the State serve principally as nesting areas and sanctuaries for migratory waterfowl.


Fishing is provided on several of these Refuge areas and most of them are equipped with recreational areas for public use.

The Lake Darling reservoir on the Souris River serves effectively in controlling the flood waters of the Souris River that originate in Saskatchewan. The City of Minot has been saved from having disastrous floods by means of this installation and its operation.

The conservation of our water resources is of interest to the U.S. Fish & Wildlife Service as a means of providing for the conservation of our wildlife resources. Their part in this program is carried out through the construction of dams, primarily for reservoirs for game and fish conservation; the study, planning and development of our water resources for production and protection of fish and wildlife; the creation and maintenance of wildlife refuges and numerous other related means.

At the present time the U.S. Fish and Wildlife Service has in operation many refuges, the first being Stump lake, created in 1905. Among the other phases of their program is the maintenance and operation of Lake Darling dam and reservoir, on the Souris river, which has not only provided a means for wildlife conservation but also has provided protection for the city of Minot from floods; the operation of the Valley City Fish Cultural Station on the Sheyenne river near Valley City, which provides over two million spiney rayed fish each year for North Dakota lakes and streams, and the study and evaluation of the agricultural drainage program and its effects on wildlife.

The Valley City Fish Cultural Station which was established in 1938 is located along the banks of the Sheyenne River near Valley City on a 58-acre tract of Government owned land. Water for the 13 fish rearing ponds, that vary in size from  $\frac{1}{2}$  to  $\frac{3}{2}$  acres in size, is pumped from the Sheyenne River.



# STATE OF NORTH DAKOTA

# REPORT OF THE STATE GEOLOGIST Dr. Wilson M. Laird

During the past six years ground-water investigations by the Ground Water Branch of the United States Geological Survey have been in progress in various parts of the State. These investigations are being made in financial cooperation with the North Dakota State Water Conservation Commission, under the general supervision of the State Geologist who acts as technical advisor for the State Water Conservation Commission in their program.

The ultimate aim of the program is to obtain an overall knowledge of the ground-water resources in the entire State which would be adequate for effectively directing the optimum development of this resource for domestic, municipal, industrial and irrigation purposes and for effectively programming conservation and administrative measures which may be necessary or desirable in connection with its development and use.

However, there currently is a great need for adequate and perennial ground-water supplies for numerous communities throughout the State which are attempting to construct public water-supply and sewage facilities for the first time or which have experienced shortages under present facilities. Therefore, the bulk of the investigational work has been directed toward securing data on the ground-water resources that would be within reach of these communities.

Through contacts with the State Geologist and the State Water Conservation Commission, about 80 communities have expressed interest in receiving assistance under this program. However, because of the limitations imposed on the program by available equipment, personnel and funds, it has not been possible to give assistance to all of these communities up to the present time. Consequently, many of the communities have temporarily solved many of their problems on their own initiative or with nominal assistance from the State Geologist and the State Water Conservation Commission and no longer appear to be actively interested in obtaining the benefits of an area investigation at the present time. On the other hand, many communities are much interested in this work but have not taken the necessary preliminary steps to obtain an investigation in their area because of the length of time before work could actually get under way.

At the present time, investigations have been completed or are under way in 28 areas in the State and arrangements have been completed to do work in one other area. Reports have been released on 15 areas and four other reports have been completed but not officially released as yet. It is expected that the field work will be completed on all of these projects that are now under way during the forthcoming field season and that all reports will be completed during the following winter. In all, the reports will present information for more than 3,000 square miles of area.

The reports on the investigations may be had free of charge unless the supply for distribution has been exhausted, in which case copies may be examined in any of the State College libraries, the North Dakota Research Foundation library in Bismarck, offices of the State Water Conservation Commission in Bismarck, United States Geological Survey in Bismarck, North Dakota Geological Survey and the United States Geological Survey both at the University of North Dakota in Grand Forks.. Requests for reports should be made to one of the following agencies:

> North Dakota State Water Conservation Commission Bismarck, North Dakota

North Dakota Geological Survey University Station Grand Forks, North Dakota

United States Geological Survey University Station Grand Forks, North Dakota

The following list shows the reports that have been completed and whether or not they are currently available:

- No. 1. Ground Water in the Fessenden Area, Wells County, North Dakota, by Leonard Filaseta, 1946. (Edition exhausted)
- No. 2. Ground Water in Beach Deposits of Glacial Lake Agassiz near Mountain, Pembina County, North Dakota, by P. D. Akin, 1946. (Edition exhausted)
- No. 3. Ground Water at Dickinson, North Dakota, by T. G. McLaughlin, 1946.
- No. 4. Ground Water in the Deposits of Ancient Lake Dakota, Dickey County, North Dakota, by William C. Rasmussen, 1947. (Edition exhausted)
- No. 5. Ground Water near Buxton, Traill County, North Dakota, by P. E. Dennis, 1947.
- No. 6. Geology and Ground Water Conditions at Minot, North Dakota, by P. D. Akin, 1947.
- No. 7. Ground Water in the Aneta Area, Nelson County, North Dakota, by P. E. Dennis, 1947.
- No. 8. Ground Water in the Sharon Area, Steele County, North Dakota, by P. E. Dennis, 1947.
- No. 9. Ground Water in the Hope Area, Steele County, North Dakota, by P. E. Dennis, 1948.
- No. 10. Ground Water in the Wimbledon Area. Barnes and Stutsman Counties, North Dakota, by P. E. Dennis, 1948.
- No. 11. Geology and Ground Water Resources of Parts of Cass and Clay Counties, North Dakota and Minnesota, by P. E. Dennis, P. D. Akin and G. F. Worts, 1949.
- No. 12. Ground Water in the Zeeland Area, North Dakota, by Wilson M. Laird, 1948.

- No. 13. Ground Water in the Wyndmere Area, Richland County, North Dakota, by P. E. Dennis, P. D. Akin and Suzanne L. Jones, 1950.
- No. 14. Ground Water in the Kindred Area, Cass and Richland Counties, North Dakota, by P. E. Dennis, P. D. Akin and Suzanne L. Jones, 1950.
- No. 15. Ground Water in the Portland Area, Traill County, North Dakota, by P. E. Dennis and P. D. Akin, 1950.

Ground Water in the Fargo-Moorhead Area, North Dakota and Minnesota, by A. C. Byers, L. K. Wenzel, W. M. Laird and P. E. Dennis, 1946. (Edition exhausted)

Reports completed but not released:

- No. 16. Ground Water in the Neche Area, Pembina County, North Dakota, by Quentin F. Paulson, 1950.
- No. 17. Ground Water in the Mohall Area, Bottineau and Renville Counties, North Dakota, by P. D. Akin, 1950.
- No. 18. Ground Water in the Litchville Area, Barnes County, North Dakota, by P. D. Akin, 1950.
- No. 19. Geology and Ground Water Resources in the Minnewaukan Area, Benson County, North Dakota, by Saul Aronow, P. E. Dennis and P. D. Akin, 1950.

In addition to the project type of investigation referred to above, a continuing program of obtaining water-level records in observation wells throughout the State is being maintained. At the end of 1949 water levels were being measured in 153 wells in the State. Of these, 7 were equipped with automatic water-stage recorders to give a continuous record of the water-level fluctuation and 29 were being measured weekly by local observers who are paid a small fee for their service. The remainder of the wells are measured at least twice a year.

Because of the great increase in the use of ground water for municipal and industrial purposes during the past five to ten years, due largely to expansion or new construction of municipal facilities, there is a great need for considerable expansion of the observation-well program. Along with this expansion, a program for obtaining current data on the amount of water being used is needed for correlation with the water-level data. In many instances, this type of data will be very valuable in determining whether certain aquifers would be able to produce more water or whether they are overdeveloped at the present time. In many cases, forewarning of depletion of certain aquifers could be given before serious water-supply shortages result.

Test drilling with the state-owned drilling machine is an important part of the work being done in the State. During the past drilling season 124 holes were drilled with a total footage of 14,485 feet. At the end of 1949, 64,220 feet of test drilling had been done under the cooperative

program. All of the samples obtained from the test drilling have been preserved and are on file for public inspection at the North Dakota Geological Survey in Grand Forks.

As indicated in the last biennial report, as soon as current municipal problems are fairly well settled, the project investigations should be expanded to a more regional scale so that general information over broader areas can be made available to the general public. Aside from domestic and municipal needs, there is considerable interest in certain areas in the possibility of obtaining ground-water supplies for irrigation and heavy industrial purposes.

As soon as possible, studies of the waters of the Dakota sandstone and other special aquifers in the State should be undertaken. Such a study on a rather small scale was made several years ago in the Ellendale-Jamestown area. These new studies should be carried on with a view to making recommendations to the well owners as to proper conservation procedures. At the present time many wells are being allowed to flow in such fashion that not only is it ruining good land on which the rather salty artesian water flows, but it is also diminishing the artesian pressure so that some wells which formerly flowed no longer do so. It would be wise if a complete study of these formations were made so that recommendations as to conservation of this very valuable natural resource might be made.

# STATUS OF GROUND WATER INVESTIGATIONS ON MUNICIPAL PROBLEMS

# (Field Work)

Investigations completed:

| Aneta          | Lakota      | Neche        |
|----------------|-------------|--------------|
| Buxton         | Litchville  | New Rockford |
| Cavalier       | Maddock     | Portland     |
| Dickinson      | Michigan    | Oakes        |
| Fessenden      | Minnewaukan | Sharon       |
| Fargo-Moorhead | Minot       | Wimbledon    |
| Hope           | Mchall      | Wyndmere     |
| Kindred        | Mountain    | Zeeland      |

Richardton

Rolla

# Investigations in progress:

Bowbells Devils Lake Mylo St. John Streeter

Investigations to be started:

Fairmount

### STATE OF NORTH DAKOTA

# **IRRIGATION FROM UNDERGROUND WATERS**

Large areas in the arid southwestern states are being irrigated from underground waters by pumping. In some areas it has been found that increased use of this type of irrigation has exhausted and lowered the level of ground waters to a point where it is no longer possible and economical to pump from great depths, as the water table continues to lower each succeeding year.

Underground water surveys being made by the U. S. Geological Survey in cooperation with the North Dakota Water Conservation Commission indicate that some areas of the state are underlaid with sufficient water supplies to warrant some irrigation by pumping from wells.

A recent groundwater survey in the vicinity of Streeter indicates there may be sufficient groundwater available to irrigate large areas of land by pumping.

Other areas investigated have shown sufficient ground water deposits that would be ample for small irrigation tracts. The introduction of irrigation sprinkler systems has greatly widened future possibilities for this type of irrigation over the state.

### Mandan Nursery Irrigates From Well

Recent reports show the Heart River unit of the Mandan soil conservation service nursery is now using water from a 100-foot well for irrigation.

A pump with capacity of 900 gallons of water per minute is being used. This nursery was formerly irrigated with water pumped from the Heart river. After the 1950 spring run-off floods subsided, it was found that the Heart river had changed its course and the new channel was about 1,000 feet from the former pump site.

This well is one of the first of its type in this area, and so far is giving satisfactory results. SCS officials state the well and pump cost \$2,450.

# STATE COOPERATING AGENCIES

# STATE HEALTH DEPARTMENT

The State Department of Health, through the Division of Sanitary Engineering, cooperates closely with the Water Commission and the State Engineer on problems of mutual concern. Thirty plans and specifications for water and/or sewerage installations, or extensions thereto have been examined by the Health Department. These plans require the joint approval of the Water Conservation Commission and the State Health Department before construction can be initiated.

The Sanitary Engineering Division has been represented at Army hearings on flood control projects. This representation has provided information on stream pollution, and on the water requirements of certain municipalities for water supply, and for sewage dilution purposes.

The Interstate Sanitation Committee, organized in May, 1944, and comprised of Health and Conservation Department officials from Minnesota, South Dakota and North Dakota, has continued to function during the biennium. This Committee established certain policies specifying the degree of waste treatment required of municipalities or industries, which disposes of their effluents in the waters of the Red River Basin. A policy of joint reviewal of plans and specifications of proposed waste treatment plants, industrial or municipal, has been established.

In response to requests initiated by interested parties along the Mouse river and directed to the State Water Conservation Commission, investigations of the stream pollution problems of that watershed will be performed. This project will be conducted by the State Health Department, with the Water Commission supplying information on past and future stream flows and uses. Preliminary work on the studies are under way at present.

# AGRICULTURAL COLLEGE

The vast Missouri river development program will have a tremendous effect on North Dakota agriculture and materially alter the role of the North Dakota Agricultural College, in the opinion of Dean H. L. Walster. He stated that both irrigation and dam building phases of the project will affect the work of the College because of the changes which will be brought about in North Dakota agriculture, and in the social and economic status of the people of the state.

It is estimated that the Garrison dam and hydroelectric plant will probably be able to furnish power over the whole state about 1954, which will bring electricity to most farms at low rates in addition to the present city users, and should bring additional industries.

All these developments will call for much research at the college, such as the use of irrigation on glacial soil, marketing of intensive farming products and other activities.

A plan for an educational campaign reaching into every county, by the county agents, with assistance from the state leaders and others, will bring to the people more of a realization of the great changes and the increased security for agriculture and stock-raising as a result from the planned water utilization. The long-range program will endeavor to conserve and improve the lands, build up and protect forest resources, enlarge and improve agriculture by irrigation and drainage, stabilize and improve farm income, reduce flood and sediment damage and enhance recreation and wild life.

# STATE OF NORTH DAKOTA

# BANK OF NORTH DAKOTA

This state-owned bank acts as trustee for all the issues of bonds of the State Water Conservation Commission, to aid in the securing of funds for the construction and development of irrigation.

The best of cooperation has been given by the officials of the Bank on all the transactions it has handled for the Water Commission. It is carrying \$63,000 unpaid balance on outstanding bonds, but has collected more than \$42,000 which is deposited in a sinking fund from which payment of bonds or interest is made when due, and has collateral bonds which when collected will provide funds to pay off all the Water Commission bond obligations.

# **OTHER COOPERATING AGENCIES**

# GREATER NORTH DAKOTA ASSOCIATION

One of the greatest forces working for the betterment of all of the people of North Dakota, is the Greater North Dakota Association. Its officials have always been ready to give this Commission any assistance requested for the water development program. It recognizes that income from livestock and dairying must be the foundation of agriculture, and that the western two-thirds of the state must have irrigation to raise feed for the stock in drouth years or suffer great losses and the steady income which is necessary to pay the running expenses of the farmer.

Its accumulation of movie pictures of scenes along the routes of the water development program in North Dakota, and the showing of these films to community gatherings of the people has been a great contribution to the educational program on what the water development program will mean to the future of North Dakota.

# FARM ORGANIZATIONS

The officers of the North Dakota farmers organizations have cooperated in the distribution of information through its leaders and members regarding diversion of the Missouri river and the development of irrigation. They recognize the necessity of farmers having ample feed for livestock so as to have enough income to at least pay running expenses of the farm on drouth years, and that irrigation is the only way to be assured that the feed is available within easy trucking distance. Members of these farm organizations have given outstanding service in promoting the development of the state's natural resources.

# IRRIGATED PASTURE COMPARED WITH DRY LAND

John Sura, wife and son write of their experiences for twenty-five years on a 960-acre dry-farmed land near Glendive, Montana, and the hardships and uncertainties, and then changing eight years ago to a 103-acre irrigated farm on the Buffalo Rapids Irrigation Project, only

six miles from their former location, and the happiness and home comfort and security they found there.

Under irrigation, they raise most of the feed for a dairy herd of 38 head, on a little over 2½ acres of land per head, while on the former dry land it required ten times the acreage per head. Now they have a beautiful lawn around the house, with flowers and trees in the garden, and it is much nicer living.

He states he purchased the irrigated farm on a 40-year contract but has had some better-than-average years and expects to get the farm paid for in just a few more years, after 8 years of operation.

# CROP YIELDS ON IRRIGATED TEST FARM

Despite major hail losses, the experimental irrigated farm near Mandan yielded nearly three times the average dry land farm results in 1949 gross value. Hail damage cut the flax yield an estimated 25 per cent and the oats and barley yields 70 per cent. But the gross value of the crops harvested was \$5,805.80 as compared to \$2,019.87 under dryfarming conditions on lands in the Heart river valley, according to Daniel J. McClelland, Morton County Agent. The experimental farm includes 71.5 acres and is operated cooperatively by the State Training School and the Bureau of Reclamation.

# **INCREASED YIELDS UNDER IRRIGATION**

While the Bureau of Reclamation reports that yields under irrigation average over the 17 western states two and a half to three times as much as under dry land farming methods, and in many cases are 10 to even 50 times as much, Robert M. Salter, Chief of Soils and Agricultural Engineering, U. S. Department of Agriculture, reports in the "Reclamation Era" magazine states "There may be far higher crop yields and profits in an acre-foot of water than is now generally obtained."

That in 1947, 162 bushels of corn an acre were obtained in the Columbia River Basin where irrigation usually gets about 40 bushels; that in parts of the West, as much as 40 tons of sugar beets an acre, and 10 tons of alfalfa have been harvested; oats yields went to 114 bushels; potato yields to almost 600 bushels and grain sorghums to 174 bushels to the acre. He states, "Conditions which secured these yields can be duplicated on most irrigated farms."

The irrigation farmer can control the water. Other factors which control the growth are the amount of nutrients, how thick the crop is planted, time of planting, amount of available water, crop variety, control of weeds, and cultural practices, with control of insects and disease. Research systems of crops, soil, and water management will develop the best combination for each type of soil and locality.

# STATE OF NORTH DAKOTA

# SOURCES OF NORTH DAKOTA FARM INCOME

Statistics show that wheat provided 45 per cent of the 1947 income from farms in North Dakota, flax 9 per cent, barley 9 per cent, oats 3 per cent, other crops 6 per cent, cattle 12 per cent, dairying 7 per cent, hogs 5 per cent, poultry and eggs 3 per cent and sheep 1 per cent. In comparison, Minnesota, Montana and South Dakota show less wheat and more cattle, hogs, dairying, poultry and eggs. Irrigation and more assured feed crops will tend to reduce wheat acreages and increase stability of farm income.

# INTERSTATE RIVER COMPACTS IMPORTANT

It is recognized now that there is an imperative need for conservation and control of the waters in our rivers and streams in order to provide adequate supplies for municipal, domestic and industrial uses; for the prevention of stream pollution and for adequate sewage disposal as well as for irrigation.

It is of much concern to the State of North Dakota that it shall not be deprived of its reasonable and equitable share of the waters of interstate streams; that is, the waters of the Red River of the North, the Souris River, the James river, the Grand river, the Little Missouri river, the Yellowstone river and the Missouri river.

Compacts between states is generally recognized as the best method of making an equitable division between or among states of the waters of interstate streams, rather than by court decisions which sometimes involves endless litigation and much expense. The following reports on compacts pending shows what progress has been made in each case.

# LAKE TRAVERSE AND BOIS DE SIOUX RIVER

Probably the earliest project completed to aid in the control of flood waters on the Bois de Sioux and Red River, was the Lake Traverse dam and flood control works. It is located at the source of the Red river. By placing a dam at the outlet, surplus flood waters are held back during flood periods and released as the river channel is able to carry it without flooding adjoining farm lands. The Bois de Sioux river bed was straightened and deepened in places to aid in the disposal of released waters. It has been in successful operation since 1941.

# TRI-STATE WATERS COMMISSION

A compact was made by the states of South Dakota, North Dakota and Minnesota in June, 1937, and congress gave its approval on April 2, 1938, providing for the organization of the Tri State Waters Commission of nine members, three from each of the three states, to supervise the drainage area of the Red river except the Otter Tail river and its tributaries. It has power to maintain and control lake levels, stream flood and boundary waters in cooperation with state, federal and municipal

agencies; to make studies and surveys for construction, maintenance and operation of water projects within the scope of its jurisdiction. Meetings of the Commission are called as matters come up in the area it supervises.

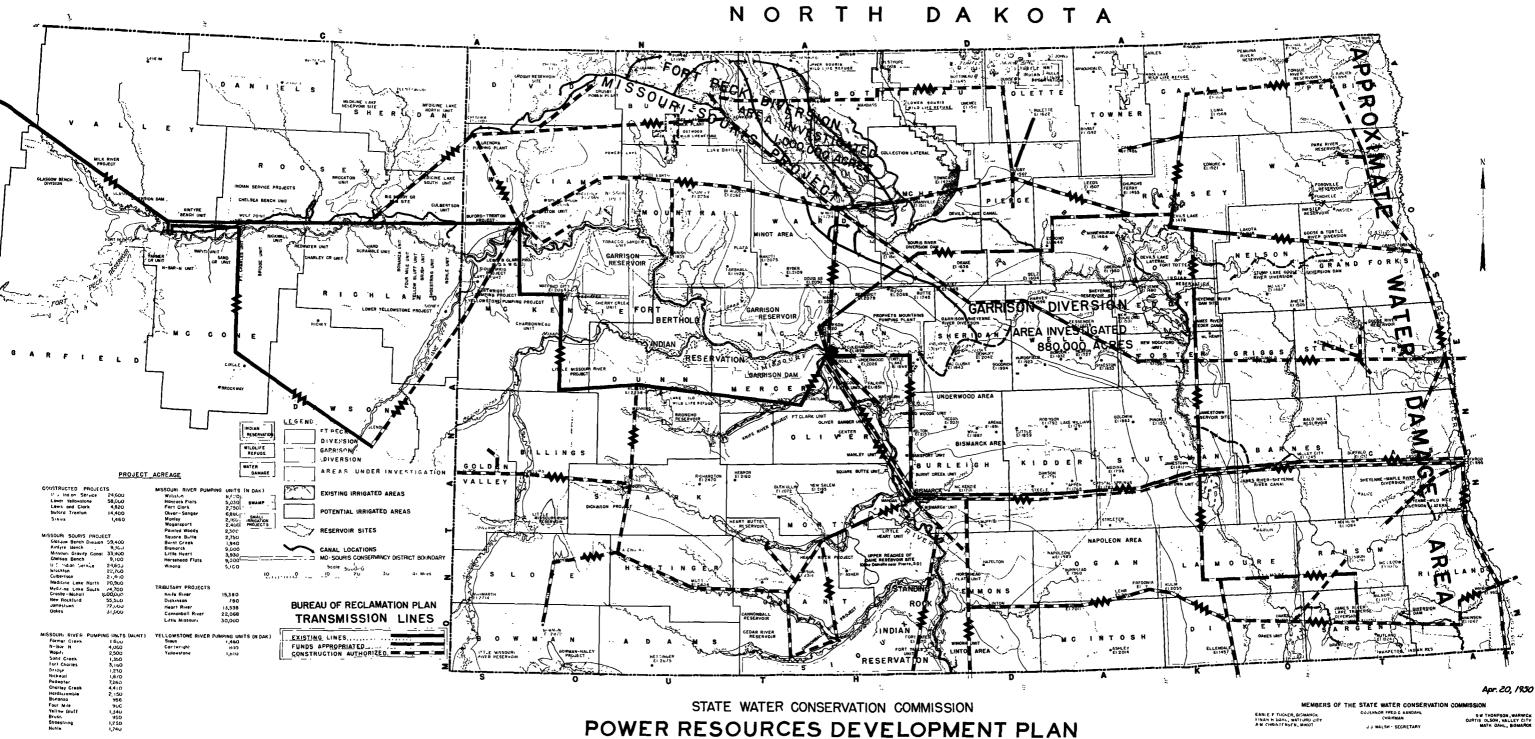
# THE RED RIVER

Congress has authorized the Corps of Engineers to undertake a broad construction program on drainage of the Red River and its tributaries in Minnesota, North Dakota and South Dakota, to alleviate the damage from flood waters, and for channel improvements on the Sheyenne, Rush and Red rivers in North Dakota. Construction work has been started and will continue over a series of years.

Division and allocation of the waters of the Red river basin are under study by the joint engineering committee of the International Joint Commission, and is expected to make its report and adjudication of the waters in the near future.

# SOURIS RIVER

The adjudication and division of waters between the provinces of Saskatchewan and Manitoba and the state of North Dakota, is under the control of the International Joint Commission, composed of three members from the governments of the United States and Canada.


Members of this commission have conducted studies in 1940 covering the regulation of the flow of the Souris (Mouse) river. They recommended that the Province of Saskatchewan and the state of North Dakota continue use of waters of this river as before unless regulations are later qualified or modified by the Commission.

The International Commission authorized a joint board of engineers to make investigation and studies of the uses of the waters of the Souris and Red rivers, in North Dakota. Several meetings have been held by the engineering committee, and it is thought further studies will be necessary before a report is submitted.

#### **COMPACTS UNDER NEGOTIATION**

### Yellowstone River

The first congressional authorization for a Yellowstone River Compact was in 1932 and included the states of Montana and Wyoming. In 1935 and 1937, negotiations were continued with the result that recommendations for agreements were placed before their respective legislatures, which, however, failed to accept the compact as submitted by the Commission. In 1940 the congressional act of 1937, authorizing the Yellowstone River Compact, was amended to include North Dakota and the time for negotiations extended to June 1, 1943.



In October and December, 1942, a compact was approved by the Compact Commissioners and submitted to the legislatures of the respective states for ratification. It was approved and signed by the governors of Montana and North Dakota but vetoed by the governor of Wyoming.

Further negotiations were not undertaken until in 1949, when congressional authority was granted the states of Wyoming, Montana and North Dakota by Public Law 83 of the 81st Congress, approved on June 2, 1949, to negotiate a Yellowstone River Compact. The act authorizing this compact states:

> Yellowstone River Compact for Division of Waters, Chapter 166—Public Laws 83

An act granting the consent of congress to the states of Montana, North Dakota, and Wyoming to negotiate and enter into a compact or agreement for division of the waters of the Yellowstone River.

Be it enacted by the Senate and House of Representatives of the United States of America in Congress assembled, that:

The consent of congress is hereby given to the states of Montana, North Dakota, and Wyoming to negotiate and enter into a compact, or agreement, not later than June 1, 1952, providing for an equitable division and apportionment between the states, of the water supply of the Yellowstone River and of the streams tributary thereto, upon condition that one suitable person, who shall be appointed by the president of the United States, shall participate in said Negotiations as the representative of the states and shall make a report to the congress of proceedings and of any compact or agreement entered into; provided, that such compact or agreement shall not be binding or obligatory upon any of the parties thereto unless and until the same shall be approved by the legislatures of each of said states and by the Congress of the United States; provided further, that nothing in this act shall apply to any waters within or tributary to the Yellowstone National Park or shall establish any right or interest in or to any lands within the boundary thereto.

Approved June 2, 1949.

The problem of allocating the waters of the Yellowstone river basin is becoming increasingly important, as its drainage basin includes areas in the states of Wyoming, Montana, and North Dakota, and each of these states is entitled to a proportionate share in the waters. These state rights can be settled either through an action in the supreme court of the United States or by means of a state compact as provided in the federal constitution. Court proceedings of this nature are costly and slow, frequently requiring thousands of dollars. The compact method of agreement between the states is preferable to going through courts.

On November 29, 1949, the Yellowstone Compact Commission authorized by the 81st Congress held its first meeting at Billings, Montana, setting up engineering and drafting committees to draw up a tentative

189

1

a

a

N

it

c M fl

R

W

u

 $\mathbf{C}$ 

w

S

 $\mathbf{th}$ 

m

th

th

us

or

to

ar

 $\mathbf{th}$ 

ne

ра

19

m

tu Co

Υe

 $\mathbf{th}$ 

form of compact. The main obstacle to approval in the past has been between Wyoming and Montana in reaching an agreement of the distribution of the waters of the Powder, Big Horn, Tongue, Clarks Fork and Yellowstone rivers.

Members of the Yellowstone Compact Commission appointed by the Governor of North Dakota are:

Einar H. Dahl, Member of State Water Conservation Commission, Watford City, N. Dak.

I. A. Acker, Special Asst. Att'y General for the State Water Conservation Commission of North Dakota, Member Drafting Committee, Bismarck, N. Dak.

J. J. Walsh, State Engineer, Member Engineering Committee, Bismarck, N. Dak.

Federal agencies are represented by R. J. Newell, commission chairman, appointed by the President, and O. C. Reedy, commission secretary.

# North Branch of the Grand River

The apportionment of the waters of the North Branch of the Grand river between North and South Dakota is a problem that will require

attention in the near future. At present, the Bureau of Reclamation has under construction the Shadehill dam and reservoir for storage of the major portion of runoff from both forks of the river. The Bowman-Haley irrigation project in Bowman and Adams counties, on the North Fork of the Grand river in North Dakota, was organized in the early 1930's for the irrigation of several thousand acres of river bottom land. Public lands were withdrawn for a reservoir site. North Dakota's rights to the waters originating within the state are protected by our state constitution and a compact is necessary to protect these rights.

### James River

Future development of areas in the James river basin will require consideration of a compact between North and South Dakota for the allocation of the waters of the James river. This river originates in central North Dakota and empties into the Missouri river near Yankton, South Dakota.

Before an equitable division of the waters of the James river for domestic, municipal, industrial and irrigation uses is allocated to North and South Dakota, a compact between the two states is essential and should be negotiated before any large development or construction works have been initiated.

# Little Missouri River Compact

In 1940, Congress authorized Wyoming, South Dakota, Montana, and North Dakota to enter into compact negotiations for the allocation of the waters of the Little Missouri river. Preliminary surveys were undertaken but no agreement was reached prior to the expiration date of January 1, 1943. The equitable apportionment of the waters of this stream is a highly complicated problem and it is most important that North Dakota be allotted its equitable share of the waters for irrigation and for general agricultural purposes.

# INTERNATIONAL JOINT COMMISSION

On January 11, 1909, the United States and Great Britain entered into a treaty relating to boundary waters and questions arising between these two countries. This treaty provided that an International Joint Commission be created to have jurisdiction over the use of boundary waters by the United States and Canada. This Commission consists of six members, three from each country.

Members of the International Joint Commission representing the United States are: A. O. Stanley, chairman, U.S. Section, Washington, D. C.; R. McWhorter, member, chief engineer of the Federal Power Commission, Washington, D. C. , and E. W. Weber, member, Army Corps of Engineers, Washington, D. C.

Matters relating to international waters are referred to the International Joint Commission for study and decision. Such studies were titled "References" and may be instituted by the Commission upon application by an interested government or private party. To date there have been two References that effect North Dakota, which are:

Souris (Mouse) River Reference

Souris-Red Rivers Reference

# SOURIS (MOUSE) RIVER REFERENCE

The Souris (Mouse) river, an international stream located in the Hudson Bay drainage area, has its source in southern Saskatchewan, Canada, and flows in a loop for a distance of 300 miles through the state, returning to the Province of Manitoba, Canada.

Recommendations of apportionment of the waters of the Souris (Mouse) river, between the Province of Saskatchewan, state of North Dakota and the Province of Manitoba were made by the International Joint Commission in their report approved at Ottawa, Canada, on October 2, 1940. The Commission recommends interim measures pending permanent settlement of the reference as follows:

- 1. The Province of Saskatchewan shall be permitted to continue its present use of the waters of the Souris river, and in addition, to construct a reservoir with usable capacity not exceeding 4,000 acre feet, for the purpose of providing an adequate water supply for the town of Weyburn and the Mental Hospital at Weyburn.
- 2. The State of North Dakota shall be permitted to continue its present use of the waters of the Souris river, and in addition, to

construct a small reservoir on Long Creek, with capacity of 200 acre feet, to provide an adequate water supply for the town of Crosby, North Dakota.

- 3. A regulated flow of not less than 10 cubic feet per second shall be released from the State of North Dakota to the Province of Manitoba during the months of June, July, August, September and October of each year.
- 4. In the event that the State of North Dakota or the provinces of Saskatchewan or Manitoba should desire to construct any additional storage works, or otherwise make additional use of the waters of the Souris river basin, application shall be made to the International Joint Commission for authority to construct the desired storage works or otherwise to make use of additional waters.
- 5. The interim measures for which provision is hereinbefore made shall remain in effect unless subsequently qualified or modified by the Commission prior to the adoption of permanent measures in accordance with the requirement of "Questions (1) and (2) of the Reference."

On November 17, 1942, after two years of operation under the terms of original report, the International Joint Commission issued an interim order in the matter of the apportionment of the waters of the Souris (Mouse) river which increased the amount of water released at the Westhope dam in North Dakota from 10 to 20 cubic feet per second. This action was taken in order to augment the original allocation to Manitoba, which was found to be inadequate.

### SOURIS-RED RIVERS REFERENCE

In January, 1948, the governments of the Dominion of Canada and of the United States of America initiated a Reference to the International Joint Commission to investigate the use of the waters of the Souris and Red rivers and make recommendations for the apportionment of waters between Canada and the United States.

An Engineering Committee, composed of Canadian and United States engineers, was appointed to review the problems of this Reference and to determine the water requirements of the two countries for municipal, industrial, irrigation, hydro-electric and stream pollution abatement uses. Separate reports are being prepared to cover the Red and the Souris rivers. The reports are to be submitted to the International Joint Commission so it can determine allocation of waters of these rivers.

The Reference is composed of four paragraphs, as follows:

1. To investigate and report on the water requirements arising out of the existing dams and other works or projects located in the waters which are of common interest along, across, or in the vicinity of the International Boundary from the eastern boundary of the Milk River drainage basin on the west up to and including the drainage basin of the Red river of the North on the east.

2. To report whether in the judgment of the Commission further uses of these waters within their respective boundaries by Canada and the United States would be practicable in the public interest from the points of view of the two governments.

3. Having regard to the report made under paragraphs 1 and 2, and for those streams where in the judgment of the International Joint Commission apportionment of the waters is advisable, to make advisory recommendations concerning the apportionment which should be made between Canada and the United States of such of the waters under reference as cross the International Boundary, and with respect to each such crossing of the International Boundary.

4. To conduct necessary investigations and to prepare a comprehensive plan or plans of mutual advantage to the two countries for the conservation, control, and utilization of the waters under reference in accordance with the recommended apportionment thereof.

In the conduct of its investigations, and otherwise in the performance of its duties under this Reference, the International Joint Commission may utilize the services of engineers and other specially qualified personnel of technical agencies of Canada and the United States, and will, as far as possible, make use of information and technical data which have been acquired by such technical agencies or which may become available during the course of the investigation, thus avoiding duplication of effort and unnecessary expense.

# LITTLE MISSOURI RIVER IRRIGATION

Preliminary surveys on the Little Missouri river valley are being continued in western North Dakota, to determine where it is feasible to plan irrigation of enough valley land to provide alfalfa and other feeds for the stockmen of that area. Congress appropriated \$39,492 for a land resource and economic study for 1950, extending up the river into Wyoming, including surveys and drilling tests at several possible dam sites. Members of the Fish and Wildlife Service, the Park Service, the Game and Fish Department and the North Dakota Water Conservation Commission are assisting. The Water Commission engineers report that several areas along the Little Missouri appear to be irrigable. Additional surveys are planned.

Opposition has been expressed by some of the ranch landowners along the valley to the proposal to build a dam near Bullion Butte in Slope county and thus create a reservoir which would back water to near Marmarth, permitting release of water downstream during drouth periods

193



STATE OF NORTH DAKOTA

and for sprinkler irrigation of bench lands for alfalfa and feeds. This reservoir capacity is estimated to be ample to permit the diversion of some water for irrigation in Slope, Stark and Hettinger counties, where additional feed is much needed in drouth years for stock raisers.

### JAMES RIVER

The James river has its source west of Harvey, in Wells County, and flows in a southerly direction through North Dakota and across South Dakota, entering the Missouri river below Yankton.

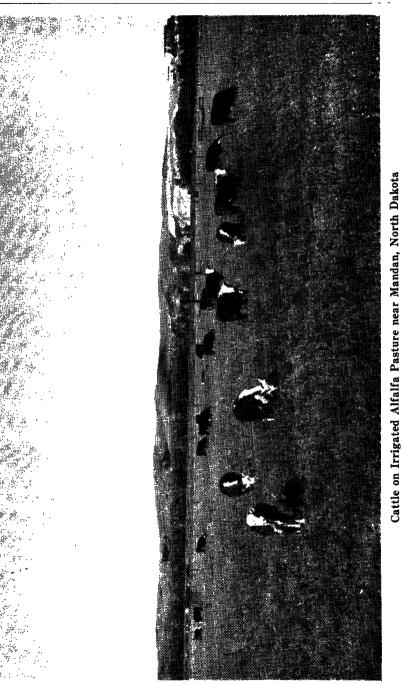
It is an interstate stream on which major floods have occurred, causing great damage. At times the small stream flow does not provide sufficient water for domestic and municipal purposes to towns and villages along its course in the two states.

Under the plan of development of the Missouri river basin, Garrison reservoir water will be diverted into the headwaters of the James river for domestic use, municipal supplies, irrigation and for other purposes.

The water commission favors a compact between North and South Dakota for the use of the waters of this stream, along which considerable construction work and irrigation has been planned.

### **BISMARCK IRRIGATED PROJECTS**

The original Bismarck irrigation project covered about 5,000 acres of bottom lands south of the city. Further surveys found that by lifting the water about an additional 25 ft. that approximately 15,870 acres could be irrigated, part of it up the Apple Creek valley. The Bureau of Reclamation engineers made soil and other surveys and estimated that about 10,000 acres in the area are suitable for irrigation. This federal unit has this project on its program for later development.


Later surveys indicate that it may be found feasible to irrigate a considerable acreage east of Bismarck in the Steele to Tappen area, by bringing water by canal from the diversion near Prophet Mountain from the Garrison reservoir, when construction has proceeded to that point.

# IRRIGATED ROTATION PASTURE TRIAL SUCCESSFUL

Twenty long-yearling steers, grazing on 7.6 acres of irrigated mixed grass and legume pasture produced 3,403 pounds of beef during June and July, August and part of September, 1950. No supplemental feed was given.

That's an average gain of a little more than one and a half pounds per day per animal, or the equivalent of 447.7 pounds of beef produced per acre. At 28 cents per pound, it represents a gross income of \$125.36 per acre.

# STATE OF NORTH DAKOTA



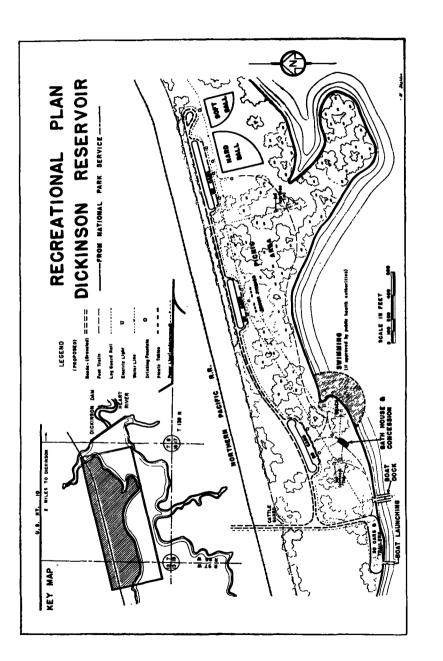
The pasture is on the Mandan development farm just west of the city, and has been established through the joint cooperation of the Agricultural College, the State Training School and the Bureau of Reclamation.

W. W. Palmer, supervisor, says the purpose is to demonstrate the adaptability of irrigation development in this area and to get practical information.

Each half of the pasture is irrigated about every ten days by about three inches of water. Border dikes or low ridges run lengthwise of the field are placed at 40-foot intervals, and spread the irrigation water.

Cattle graze on only one-half of the pasture at a time, when the other half is being irrigated and allowed to make new growth for the next grazing period.

The pasture was seeded with a combination of grasses and legumes, two pounds each of seed of alfalfa, alsike and red clover, together with eight pounds of brome and four pounds each of Russian wild rye and meadow fescue. All have done well except the wild rye.


The condition of the pasture has remained good even though it has been stocked with almost three steers per acre. The accompanying picture was taken in August, showing the steers feeding on the pasture.

# THE MISSOURI BASIN INTER-AGENCY COMMITTEE

To guide the new basin development, the Missouri Basin Inter-Agency Committee was established April 26, 1945, just four months after passage of the Flood Control Act of 1944. It was founded by resolution of the Federal Inter-Agency Committee in Washington, whose members since December, 1943, had coordinated their respective resources development work on a national level. The new organization, like the parent body, consisted of representatives of the Corps of Engineers, Department of Interior, Department of Agriculture and the Federal Power Commission, with the Department of Commerce added later.

The basin states were invited to designate two representatives to attend regular meetings. Later this number was increased to five, consisting of basin states governors.

The committee is a unique governmental entity—without legal authority or appropriations in its own name. Its members are bound together only by the will and desire to work toward a common end. The Federal Inter-Agency Committee's founding resolution referred to the new group as "providing a means through which the field representatives of the participating federal agencies may effectively interchange information and coordinate their activities among themselves with those of the states in the preparation of reports and in the planning and execution of works for the control and use of the waters of the Missouri river basin."



# STATE OF NORTH DAKOTA

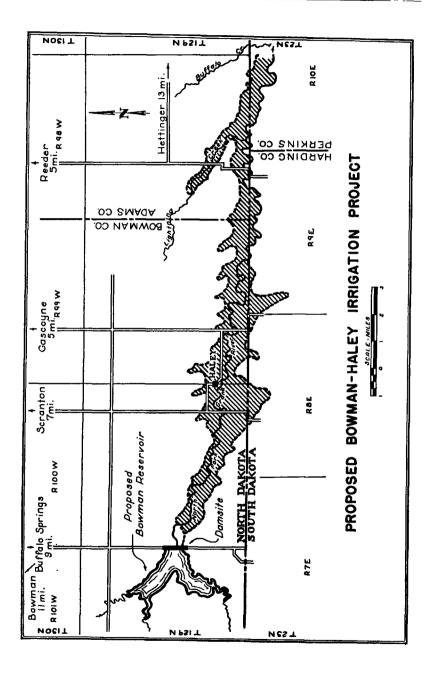
Under committee procedure, all questions, resolutions or motions must be unanimously adopted. Any irresolvable problems were to be referred to the Federal Inter-Agency body, but this has never been necessary.

Following is a list of the members and representatives of the Committee:

94040

Federal

| State                             | Federal                              |
|-----------------------------------|--------------------------------------|
| Hon. Val Peterson, Governor of    | Gladwin E. Young, Department of      |
| Nebraska                          | Agriculture, chairman                |
| Hon. George T. Mickelson, Gover-  | W. G. Sloan, Department of In-       |
| nor of South Dakota               | terior                               |
| Hon. Fred G. Aandahl, Governor of | Brig. Gen. S. D. Sturgis, Jr., Corps |
| North Dakota                      | of Engineers                         |
| Hon. John W. Bonner, Governor of  | Charles E. Brokaw, Department of     |
| Montana                           | Commerce                             |
| Hon. Forrest Smith, Governor of   | B. H. Greene, Federal Power Com-     |
| Missouri                          | mission                              |


# MISSOURI RIVER STATES COMMITTEE

The committee serves in an advisory capacity to the Missouri Basin Inter-Agency Committee and is composed of the governors of the 10 basin states and two other representatives chosen by each governor, meeting at the call of the chairman. This body has as one of its principal duties the naming of five of the governors from among its membership to serve on the Inter-Agency Committee. It also plans state activities and coordinates the work of the two agencies and discusses problems of special concern to states in the plans. North Dakota is represented by the following members: Governor Fred G. Aandahl, Halvor Halvorson, Minot, representing the Missouri-Souris Projects Association, and Curtis Olson, Valley City, Member of the State Water Conservation Commission.

# **RECREATION PARK PLANS**

The National Park Service will cooperate with any community near newly constructed reservoirs in surveying and planning recreational parks like the Dickinson recreational plan map shown on another page of this report. Valley City residents, also Park River residents have also completed elaborate plans for recreational centers and places for summer gatherings with the aid of the National Park Service. As construction of dams and reservoirs are completed over the state, there will be provided delightful recreation centers for family and community gatherings within easy driving distance. Boating and fishing and swimming will naturally add to the enjoyment, and the prospective number of recreational centers may put this state on the map as a tourist center for people from other states seeking to avoid the summer heat.

199



### STATE OF NORTH DAKOTA

# **BOWMAN-HALEY FLOOD AND IRRIGATION PROJECT**

Several meetings have been held urging immediate construction of the Bowman-Haley irrigation project, south of Scranton, about 5,000 acres. The former irrigation district has been reorganized and the need for construction stressed in order to assure livestock feed for the area in case of drouth and also to protect settlers from flood damages and possible loss of life. On request, the North Dakota State Water Conservation Commission has created a water right for the district by the reservation of the unappropriated waters of the north fork of the Grand river in Bowman county. Tentative plans would require a 50-ft. high dam across the Grand river near Haley which would impound approximately 20,000 acre-feet of water.

T.

The Bureau of Reclamation, during the summer, conducted an investigation and made surveys of the area for the purpose of determining the feasibility of the project. The State Water Conservation Commission has recommended the construction of the project.

### KNIFE RIVER FLOOD CONTROL—IRRIGATION—POWER

Appropriation was made by Congress for flood control works near Beulah, \$87,000 and Hazen \$35,500 on the Knife river. Contract for this work was completed under the direction of the Corps of Engineers in 1949.

Congress also appropriated \$102,700 for a sub-station at Beulah on the Fort Peck to Garrison dam transmission line, which was completed.

Some surveys, plans and specifications on the Broncho dam and Knife river irrigation are continuing. Further construction is awaiting appropriation by Congress.

### APPROPRIATIONS EXPLAINED

North Dakotans should keep in mind that Congress has approved the great Missouri river diversion and water development plan, involving the expenditure of an estimated six billion dollars over a period of years. About thirty million dollars was appropriated by Congress for construction and surveys and planning on North Dakota projects in 1948; about thirty-five million for 1949 and about forty million for 1950. Each year the tempo is stepped up, and it is expected that as the work progresses it may require seventy five millions per annum for North Dakota projects until completed, which is a part of similar construction in nine other states of the Missouri Basin.

# WATER COMMISSIONERS' EXPENSES

Appropriations under this item, include per diem salaries to members of the State Water Conservation Commission while attending official meetings, including state and federal conferences, and per diem, travel and maintenance expenses incurred during regular commission meetings in the state.



## ADMINISTRATION

Administration of the Water Commission activities do not include costs that may be charged to any specific item, but cover general operating administration expenses, salaries of office personnel, office supplies, purchase and maintenance of transportation equipment used for field inspection work, repair and maintenance of office equipment not otherwise covered in the appropriation for the development of the state water program.

### Maintenance of Existing Dams

Different Federal agencies built numerous dams during the drought years of the thirties to conserve water for farmers, stockmen, municipal use, and to provide places for recreation and conservation of wild life. Maintenance of these dams has been a cooperative project of the counties, nearby municipalities or wildlife associations, and the State Game and Fish Department when the reservoirs are deep enough to propagate fish and other wildlife. Spillways were not constructed strong enough to withstand continuous undermining of the waters, hence rebuilding and strengthening are commonly necessary to save these valuable water impounding structures, which are a real asset to the communities. The engineers of the Water Commission inspect and design and supervise repairs needed. The State Game and Fish Department has cooperated on those dams which they can utilize on their work.

### **International and Interstate Compacts**

As construction progresses on the Missouri river basin water development program, it has been found more and more important where streams being used cross state boundaries to have conferences between the state authorities regarding a proper distribution of the stream waters between the states, and that compacts be made covering the agreement to avoid future controversies. This entails considerable travel and transportation expense for members of the Water Commission. It includes occasional appearances before Congressional committees when consideration of appropriations are being made for these joint projects. It is necessary to protect the interests of North Dakota as between states. Continued appropriations will mean much to the future stability of agriculture, stockraising, hydro-electric power, municipal water supplies, flood control, recreational centers, etc.

# Topographic and Conservation Branches in Cooperation With U. S. on a 50-50 Basis

The surveying and preparation of topographic maps over a large portion of the U. S. has been completed by the Geological Survey engineers. The State Water Conservation Commission contracts for the continuation of this mapping in North Dakota to cover areas where water development construction is proposed. The expense of this work being paid on a 50-50 basis by the two agencies. This mapping covers



Partly Constructed Buford-Trenton Irrigation District

Located West of Williston, North Dakota in Williams County

the areas where irrigation is planned by diversion of waters from the Garrison dam and down the two sides of the Missouri river, as well as the tributaries west of the Missouri. The areas of the millionacre Missouri-Souris project are being mapped in cooperation with the Bureau of Reclamation. It is important that these topographic maps be completed before irrigation construction planning begins because of the saving of time and expense and the increase in speed of construction resulting from the mapped information.

# Hydrographic Surveys, Also in Cooperation With U. S. Geological Survey on 50-50 Basis

Reliable information giving stream flow measurements over a long period of time is essential before engineers can produce reliable plans and specifications for dams, reservoirs, water power, irrigation and flood control. These records of minimum and maximum flow of streams are necessary to determine the size needed on proposed reservoirs to hold back flood waters, and what acreage can be irrigated by the available waters.

# Salary, State Engineer

The Executive Secretary and Chief Engineer of the State Water Conservation Commission is also designated as the State Engineer. He is supervisor of the use of all of the waters of the state. He makes agreements with the approval of the Water Commission for cooperative surveys and plans and specifications for the construction of dams and irrigation works.

### **Reconstruction Drains or Irrigation**

Loss from flooding of crop lands in the Red River valley in 1943-44 was estimated at more than twenty-four million dollars. The legislatures have been appropriating drainage funds to the Water Commission for allocation to the different counties as needed to pay a part of the cost of repair and cleanout of drainage ditches. This work is continued in cooperation with the Department of Agriculture Soil Conservation Service and will greatly reduce the loss to crops and property which has been experienced on former years. Smaller irrigation districts also need emergency aid at times to cover repairs of damage by storms and floods.

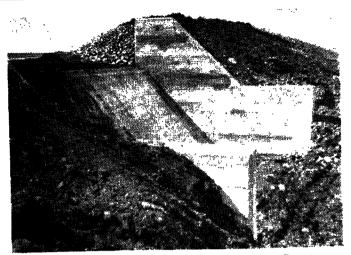
# Engineering and Geological Surveys and Demonstrations

More than seventy communities in North Dakota requested assistance from the State Water Conservation Commission to find suitable potable water for their needs. This appropriation is used mostly for supervision of this work by the State Geologist, representing the Water Commission. All state funds are being matched on a 50-50 basis by government funds of the U. S. Geological Survey in making necessary investigations and test drilling with the state-owned rotary drill. Each municipality is required to make a proportionate payment of the expense. About onehalf of the communities requesting aid in finding more and better water have been served, with remarkable success in most cases. It appears that this work should be continued indefinitely because of the increasing number of communities finding water supplies diminishing and insufficient for their needs.

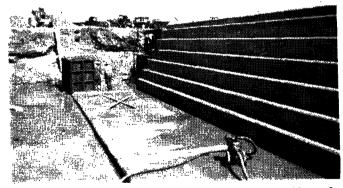
# Post-War Projects, in Cooperation With U. S. Departments, and for Organizing Conservation and Irrigation Districts

This appropriation has been used on a 50-50 basis with government funds in cooperation with the Bureau of Reclamation on studies, investigations and preliminary surveys where there is a prospect of developing additional acreages under irrigation. This type of work will increase as the Missouri river diversion construction work proceeds and new possibilities open up, as well as in assisting in the organization of irrigation and conservency districts.

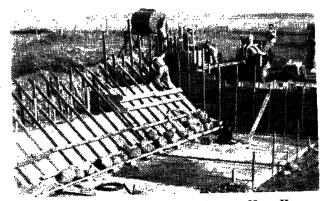
# Other Investigations, Surveys, etc.


This appropriation makes it possible for the Water Conservation Commission engineers to make surveys, investigations and plans for prospective irrigation of additional areas not included in the original plan of the Bureau of Reclamation. In the case of the Heart and Cannonball river areas, Water Commission engineers made the detailed mapping. Other areas are now being mapped where it is thought to be possible to expand irrigation.

# **Construction Bond Guaranty Fund**


The legislature provided a revolving fund to enable the Water Commission to give additional security to its bond issues to raise funds for irrigation construction when needed, thus making the bonds more readily marketable at a lower rate of interest, because of the added security. No losses have been incurred and it is expected that the full amount so far used will be returned to the fund. It is expected that in the future there will be many small irrigation districts needing financing for future construction.

# MAINTENANCE OF EXISTING DAMS


During the drouth years some 1,200 dams were built in North Dakota by Federal agencies. The reservoirs created served a number of conservation needs. They provided water for small irrigation projects; water for stock; water for municipal supplies, and recreation areas for picnicking, swimming, boating and fishing; also provide areas beneficial to wildlife.



Wilson Dam No. 343, near Edgeley, LaMoure County



Jackson Dam Spillway in McKenzie County, near Alexander



Coal Mine Lake Dam in Sheridan County, Near Harvey

### STATE OF NORTH DAKOTA

At the termination of the Federal Works program no state or federal departments were charged with the responsibility of the maintenance and repair works required to keep the structures repaired, and the counties were delegated to assume responsibility for maintenance in cases where such projects were outside of water conservation districts. This work could be financed by money budgeted for that purpose in any county, but no special levies could be made for this purpose unless authorized by the legislature. This difficulty of financing, together with a lack of trained engineering personnel, makes the dam maintenance repair work too difficult for the counties to manage. In order to meet the requirements, the state legislature has appropriated funds to the State Water Commission to carry on the work.

This program provides for investigation, survey, design and supervision of construction by the Water Commission. Nearly all the maintenance work is done by construction crews from the Water Commission, using state owned equipment. These projects are being financed on a cooperative basis, with counties and locally interested groups sharing with the Water Commission in the cost of the project. The State Game and Fish Department participates in financing of projects in which wildlife benefits prevail.

The maintenance work involved under this program is quite wide in scope. It may consist of reconstructing new spillways, to small repair jobs on slightly damaged spillways. The work consists mainly of repairs to spillway structures, including placement of steel sheet piling or concrete cutoff walls, the reconstruction or replacement of part of an overflow section with either rubble, plain, or reinforced concrete materials, and, wherever required, the replacement of riprap.

During the period of the biennium 33 spillways were reconstructed and repaired, 16 were main reconstruction projects, 17 others ranged from small to large repair jobs. These repair and reconstruction works ranged in costs from \$64.50 to \$9,364.19. Thirty-three dams were repaired in 22 counties spread over the state, showing the work is fairly evenly distributed.

There is still a large number of dams and spillways that need repairs and replacements, where the structures have been washed away by flood waters during the recent years of extremely heavy snowfall, or where maintenance work has been neglected and water is gradually wearing away small sections of the structures.

The following tables show a list of dams, their names, location by counties, distribution of expenditures by participating agencies and total cost of works.

|                |                | MAINTENANCE OF DAMS-October 1, 1948 to June 30, 1950 | • 1, 1948 to June                     | e 30, 1950         |             |                                         |
|----------------|----------------|------------------------------------------------------|---------------------------------------|--------------------|-------------|-----------------------------------------|
| Project<br>No. | Name of dam    | County W                                             | Water Commission Game and Fish        | Game and Fish      | Community   | Total Repairs                           |
| 9.67           |                | Pembina                                              | \$ 204.43                             | \$ 201.43          | \$ 204.43   | \$ 613.29                               |
| 488            | Benzi          | McLean                                               | 00.121                                |                    | 16.161      | 90.1912                                 |
| 221            | Burlington     | Ward                                                 | 0,424.00<br>04 50                     |                    | 64.50       | 129.00                                  |
| 353            | Cedar          | Slope                                                | 1 620.94                              | 1.639.24           | 1.639.24    | 1,917.72                                |
| 384            | Ccal Mine Lake | Sheridan                                             | 100 T                                 | 133.82             | 333.82      | 1,001.46                                |
| 402            | Danielson dam  | Morton                                               | 594.50                                |                    | 524.50      | 1,049.00                                |
| 476            | Faust          | Wells                                                | 1,184.40                              | 1,184.39           | 956.05      | 3,324.84                                |
|                | ressenten      | Stark                                                | 1.579.01                              | 639.80             |             | 2,218.81                                |
| 107            | treen river    | McIntosh                                             | 1,928.97                              |                    | 1,210.00    | 3,133.97                                |
|                | TIOSAIRS LAAVE | Morton                                               | 204.68                                | 204.68             | 204.68      | 514.04<br>1 0 0 0 0                     |
|                | *Toolson       | McKenzie                                             | 4,926,69                              |                    |             | 4,120.13                                |
| 0070           | Tund           | McIntosh                                             | 1,501.06                              |                    | 1,129.10    | 00-070'0                                |
| 10             | 771            | Foster                                               | 58S.10                                | 588.10             | 01.886      | 1,194.31                                |
| 916            | T telon        | Ransom                                               | 3,630.31                              | 3,630.30           | 1,500.00    | T0.001.X                                |
| 010            | Mile Oleon     | Grand Forks                                          | 430.92                                | 430.92             |             | 1,404.10                                |
|                | Tomer Conton   | Grand Forks                                          | 2,665.38                              | 2,623.43           | 2,620.44    | 01-01-1-1-                              |
|                | Miecono        | Grand Forks                                          | 364.50                                | 364.00             | 504.90      | 00.0001                                 |
| 404<br>904     | Odlund         | Golden Valley                                        | 532.96                                | 932.96             |             | 76.001T                                 |
| #006           | Dowhine        | Pembina                                              | 1,800.97                              | 00.065             | 1,800.91    | 4,001.01<br>01010                       |
| 020            | Powent         | Hettinger                                            | 210.13                                |                    |             | 01.012                                  |
| 9010           | Samia          | Nelson                                               | 169.21                                | 169.21             | 40.00       | 11.000                                  |
| 4              | Souraw Creek   | Hettinger                                            | 1,814.77                              | 00.008             |             | 01 126 0                                |
| 311            | Sivertson      | McKenzie                                             | - 8,864.19                            | 01 10              | 00.006      | 07 061                                  |
| 131            | Strawherv Lake | McLean                                               | - 07-10<br>- 07-07                    | 11.40              | 10 1 1 0    | 6 2 9 4 10                              |
| 151            | Syleeton       | Wells                                                |                                       | 00.006.1           |             | 0,001.10                                |
| 141            | Temvik         | Emmons                                               |                                       | 800.01             | 000-04      | 1 9/0 1                                 |
| 41.5           | TInderwood     | McLean                                               | 410.05                                | 6c.01 <del>1</del> | 10.014      | 10000                                   |
| 11.            | Vellov Citv    | Barnes                                               | - 1,693,94                            |                    | L,020.0+    | 000000000000000000000000000000000000000 |
| 111            | Watford City   | McKenzie                                             | . 5,512.09                            | 000000             | 0,000,00    | 0.01210.0                               |
| 380            | Williams Creek | Golden Valley                                        |                                       | 2,0110.00          | 200000      | 1 926 12                                |
| 343            | Wilson         | I,aMoure                                             | 210012                                | 1 000.00           | 1_000_00    | 5.180.17                                |
| 359            | Wolf Butte     | Adams                                                | · · · · · · · · · · · · · · · · · · · | 0000017            |             |                                         |
|                |                |                                                      | \$63,068.51                           | \$21,684.37        | \$23,845.15 | \$108,598.03                            |
|                |                |                                                      |                                       |                    |             |                                         |

\*Work in progress June 30, 1950-Costs not complete.

# STATE OF NORTH DAKOTA

# PRELIMINARY INVESTIGATIONS AND SURVEYS OF DAM REPAIRS

| Proje<br>No. | ct<br>Name of dam | County    |     | Cost     |
|--------------|-------------------|-----------|-----|----------|
| 264          | Braddock          | Emmons    | \$  | 62.13    |
| 330          | Lake Metigoshe    | Bottineau |     | 339.82   |
| 342          | Hansen            | Barnes    |     | 13.83    |
| 361          | Wilhelm           | Dunn      |     | 55.02    |
| 445          | Fish Lake         | Stutsman  |     | 237.57   |
| 453          | Berger            | Barnes    |     | 98.49    |
| 463          |                   | Cavalier  |     | 1.25     |
| 475          |                   | Steele    |     | 389.93   |
| 478          | New England       | Hettinger |     | 14.13    |
| 479          |                   | Morton    |     | 71.62    |
| 483          |                   | McKenzie  |     | 18.93    |
| 443          | Lake Juanita      | Foster    |     | 604.81   |
| 485          | Twin Lakes        | Williams  |     | 17.02    |
| 353          | Cedar             | Slope     |     | 763.14   |
|              |                   | Total     | \$2 | 2,687.69 |

# SUMMARY OF MATERIALS USED DURING THIS BIENNIUM For Repair and Maintenance of Dams

| Corrugated Sheet steel piling | 4,072 sq. ft.  |
|-------------------------------|----------------|
| Rubble concrete placed        | 2,005 cu. yds. |
| Cement used                   | 13,661 sacks   |
| Sand used                     | 1,755 tons     |
| Reinforced concrete placed    | 1,013 cu. yds. |
| Plain concrete placed         |                |
| Gravel used                   | 2,455 tons     |
| Field stone used              |                |

# **COMPLETE WATER RIGHT SUPPLEMENT "A"**

Accompanying this Seventh Biennial Report of the State Water Conservation Commission and the State Engineer, is a supplement covering a complete corrected list of Water Rights granted, brought down to July 13, 1950. In the early days of statehood, there were different ways of securing water rights from the government and the state, which were filed and recorded in the counties where the land was located in which the water was to be used. The law was changed later and the granting of water rights added to the duties of the State Engineer, who in 1938 was made the Executive Secretary of the State Water Conservation Commission. These changes in the law have resulted in much confusion and made it difficult to compile a water right list from the many counties and government agencies.

|                                                                                                                                                         | Expended<br>\$ 2,079.03<br>18,317.87 | Balance<br>\$ 1,920.97<br>* 15,154.68 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------------------------------|
| \$<br>1 10 3<br>1 10 3<br>1 10 3                                                                                                                        | \$ 2,079.03<br>18,317.87             | \$ 1,920.97<br>* 15,154.68            |
|                                                                                                                                                         | 18,317.87                            | * 15,154.68                           |
|                                                                                                                                                         | 18,317.87                            | * 15,154.68                           |
|                                                                                                                                                         |                                      |                                       |
|                                                                                                                                                         |                                      |                                       |
|                                                                                                                                                         | 58,020.76                            | 63,486.18                             |
| ervation Branches,<br>U. S. Geological Survey, plus collections 33<br>U. S. Geological Survey, plus collections 2<br>y                                  | 5,606.77                             | 6,393.23                              |
| U. S. Geological Survey, plus collections       2         Y       15         ns or Irrigation       15         gical Surveys and Demonstrations       3 | 10,477.76                            | * 22,607.84                           |
| 15                                                                                                                                                      | 9,474.21                             | 10,616.66                             |
|                                                                                                                                                         | 2,700.00                             | 2,700.00                              |
|                                                                                                                                                         | 21,423.33                            | *128,576.77                           |
|                                                                                                                                                         | 18,220.04                            | * 11,779.96                           |
| Postwar Projects, Cooperation With U. S. Departments                                                                                                    | 2,940.73                             | *132,059.27                           |
| Other Investigations, Surveys, Etc., plus collections                                                                                                   | 52,747.55                            | * 37,289.21                           |
| Construction Bond Guaranty Fund                                                                                                                         | Nil                                  | 70,541.00                             |
| \$705,109.02                                                                                                                                            | \$202,007.95                         | \$503,101.07                          |

STATE WATER CONSERVATION COMMISSION FINANCIAL STATEMENT

212 REPORT OF N. D. WATER CONSERVATION COMMISSION

# EDUCATIONAL EXHIBITS

Since construction began on the Missouri river development plan, there has been an increasing demand on the Water Commission for information regarding the program and how it will affect the different localities in the state. Informational maps and circulars and copies of addresses and radio talks have been mailed to interested people. Exhibits which show by maps, graphs, bulletins and pictures the plans and the construction progress have been shown on request at many fairs, conventions and other gatherings, as follows:

| <b>~</b>           |      |             |                                    |
|--------------------|------|-------------|------------------------------------|
| Jan. 19-21         | 1949 | Bismarck    | Isaak Walton convention            |
| <b>Jan. 27-2</b> 8 | 1949 | Jamestown   | County Agricultural Institute      |
| Feb. 1-2-3         | 1949 | Steele      | County Agricultural Institute      |
| Feb. 27-28         | 1949 | New England | Farmers Institute and Seed Show    |
| Mar. 7-12          | 1949 | Valley City | Winter Stock Show                  |
| Apr. 7-8           | 1949 | Mohall      | County Agricultural Institute      |
| June 2-4           | 1949 | Kenmare     | Harvest Festival                   |
| June 12-19         | 1949 | Fargo       | Boys State at Agricultural College |
| June 21            | 1949 | Minot       | State Teachers College Classes     |
| June 23-25         | 1949 | Crosby      | Divide County Fair                 |
| June 27-29         | 1949 | Bottineau   | County Fair                        |
| July 11-15         | 1949 | Fessenden   | Wells County Fair                  |
| July 25-30         | 1949 | Minot       | State Fair                         |
| July 22-25         | 1949 | Bismarck    | Western States Engineers           |
| Aug. 28-3          | 1949 | Fargo       | Red River Valley Fair              |
| Sept. 14-15        | 1949 | Amidon      | Slope County Fair                  |
| Sept. 21-24        | 1949 | Bisma.ck    | State Conservation Show            |
| Feb. 8-9           | 1950 | Lakota      | County Agricultural Meeting        |
| Feb. 16-17         | 1950 | New England | Farmers Institute and Seed Show    |
| March 6-11         | 1950 | Valley City | Winter Stock Show                  |
| March 14-16        | 1950 | Bismarck    | Hardware Dealers Convention        |
| Apr. 14-15         | 1950 | Fargo       | North Dakota Press Association     |
| Apr. 27-29         | 1950 | Minot       | College Rural Life Conference      |
| May 5-6            | 1950 | Bismarck    | Young Citizens League convention   |
| June 8-10          | 1950 | Bismarck    | Stockmens Association convention   |
| June 18-25         | 1950 | Fargo       | Boys State at Agricultural College |
| July 11-15         | 1950 | Fessenden   | Wells County Fair                  |
| July 24-29         | 1950 | Minot       | State Fair                         |
|                    |      |             |                                    |

# **DROUTH PERIODS IN NORTH DAKOTA**

The annual growth rings of trees, revealed at the stump when a tree is sawed down, give a faithful and clear record of weather in years in the past. When the annual rings are close together the weather was dry, and where the rings are farther apart the seasons were wet.

Dr. Rainer Schickele, economist with the N. D. Agricultural College, has used the tree ring study of George Will as depicted by the accompany-



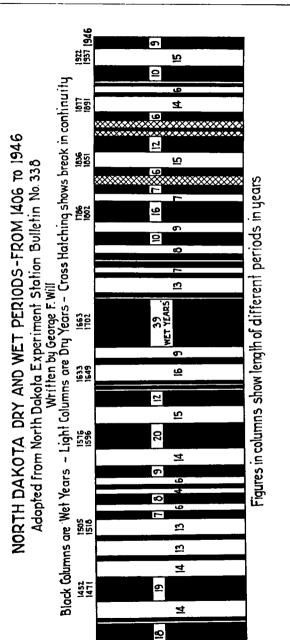
ing graph as basis for his belief that North Dakota always has had series of dry years and series of wet years.

The graph shows that during a period of 536 years there were 22 dry periods and 24 wet periods of three or more years. The longest dry period lasted 16 years while the longest wet period was 39 years. During the whole 536 years there were only five dry and five wet periods of only one or two years duration. The cycle of five to ten years was common.

Schickele maintains that "the whole economy of the Great Plains must be able to expand and contract in accordance with weather and demand for certain crops. Tillage practices, soil conservation programs, feed storage capacities, crop insurance, mortgage amortization practices, bankruptcy, foreclosure and credit policies—all must be geared to fit this special long-cycle farming area. They must fit a cycle where times of need may continue for five to ten years."

It has been suggested that irrigation of about one-tenth of the cultivated area of the state, with alfalfa and other feed crops, livestock and dairying, as the basis of farm management programs may enable farmers to live through these drouth periods and cover running expenses of the farm and family and thus survive and over a lifetime be quite successful.

# SERIES OF DROUTH YEARS MAY BE EXPERIENCED AGAIN


On application of county authorities and supported by Governor Aandahl, the Secretary of Agriculture designated 37 counties in North Dakota in 1950 as disaster loan areas.

Heavy storm damage, drouth and insect outbreaks cut the state's income from farms 32 per cent in 1949, the biggest income drop in the nation.

Farmers in disaster loan areas are thus enabled to obtain emergency loans for cropping expenses from funds formerly used by the Agricultural Credit Corporation, but now from the Farmers Home Administration.

It was reported that about 40 per cent of the farmers in need of emergency loans were World War II veterans.

Loans were made available in the counties of Benson, Pierce, Dunn, McKenzie, Eddy, Foster, Kidder, Sheridan, Stutsman, Adams, Dickey, LaMoure, McIntosh, Billings, Bowman, Golden Valley, Hettinger, Slope, Stark, Burleigh, Emmons, Grant, Morton, Sioux, Logan, Ransom, Sargent, Williams, Mercer, Oliver, McLean, Wells, Ramsey, Cavalier, Nelson, Griggs and Barnes.



റ

# STATE OF NORTH DAKOTA

# INDEX

Aandahl, Gov. Fred G. picture .....

Administration approp. explained

Alfalfa under irr., Yellowstone Agricultural College activities

Appropriations by congress, 1949

Approp. compacts, internl. interst.

Approp. topographic mapping Appropriations, Water Comm.

Bach farm home. Yellowstone irr.

Baldhill dam fish hatchery

Bond guaranty fund approp.

Burlington Irrigation Project

Canal picture, 150 ft, wide

Cannonball dam site picture

Capitol, North Dakota's Cartwright irrigation district

Corps of Engineers activities

Development farm, Mandan

Dickinson dam recreational plan ...

Diversion plan, Garrison dam

Diversion, Sheyenne and James

Drain repairs Red River valley ....

Drainage basin areas in N. D.

Drainage map Red River valley

Drains or irrigation repair approp.

Crop yields, irrigated test farms

Beulah Flood control ....

Bank of N. D., financial agent

Baldhill dam and reservoir ....

Baldhill reservoir full 1950

Beach-Mott-Bowman annual rainfall

Bismarck-Devils Lake annual rain .

Bismarck irrigated gardens

Bismarck irrigated projects

Bowman-Beach-Mott annual rainfall.

Bowman-Haley irrigation plan

Bureau of Reclamation activities

Cannonball river surveys Water Comm.

Cannonball, Bureau investigations .....

Cattle feeding irr. pasture trial

Cedar River surveys Water Comm. ....

Coal Mine Lake dam repairs

----- •

.....

Activities Water Commission ...

#### Page Page Drainage Red River basin 188 Drouth years in N. D. graph 216 29 Drouth years future prospects N. D. 215 203 Dry and wet periods in N. D. graph 216 80 184 69 Educational exhibits made 213203 Electric power lines in No. Dak. .... 68 203 Engineers, Corps of Army 15 ----33 Engincer, the State 12 Engineer-Geol. surveys approp. 206 Exhibits made, educational 213 62 19 33 Fargo-Shevenne river diversion . 81 79 Farm income sources in N. Dak. 187 185 Farm land ownership in N. D. 55 170 82 23-81 81 172 Flood control investigations 81 Financing irrigation projects 86 49 195 Fish and Wldlife Service, U. S. ... 177 207 170 200 23 77 Flood control projects in N. D. Flood control project, Marmarth .....23-81 39 Flood control, snow removal 1950 47 85 Flood relief in N. D. for 1950 ..... Flood Damage in N. D. 1950 75 71 79 Canada-U. S. Intern'l. Joint Comm. .. 191 Flood damage Red river \$28,000,000 .... Flood levees, Mandan - 34 19 Flood projects, Red River Fort Berthold reservation surveys 48 17 89 29 41 39 5 196 20 Fort Peck diversion dam Frost, killing date in fall N. D. 44 174 194 29 168 208 65 . . . 187 55 69 83

Coal Mine Lake dam repars Compacts, interstate rivers Congressional appropriations 1949 Conservancy District, No. Dak. Conservation of water in N. D. ...... Constr. bridge, Garrison dam 25 Garrison dam and controls . Garrison dam closure, rock for ...... 10 35 Contents, table of \_\_\_\_\_\_ Compacts under negotiation \_\_\_\_\_\_ Garrison dam construction bridge ...... 10 188 Garrison dam diversion plan 21 Garrison diversion surveys 29 15 .... 186 Garrison dam generating plant ..... 20 Dams and reservoirs, proposed ..... Garrison dam tunnel outlets ..... 16 Dams being repaired, pictures 208 Garrison dam tunnel portals 24 . . . . . . Dams, Maintenance Existing approp. 203 Garrison dam, tunnel outlet 66 Dam repairs cost statement 210 Garrison dam, sheep's-foot packers .... 66 Dam repairs pending statement 211 Garrison diversion irrigation 43 37 Dam repair materials used ..... 211 Garrison power available 1955 Danielson farm home, Yellowstone 64 Garrison dam tunnel construction 22 33 Golden lake project Gov. Fred G. Aandahl picture 31 Devils Lake-Bismarck annual rain 172 Devils Lake progress report 45 G. Forks-Moorhead annual rainfall ... 173 Devils Lake water levels map-graph 70 Grenora pumping plant picture ... 51 Devils Lake recreational center 57 Graphs, maps, pictures list 2-3 Dickinson dam-spillway picture ..... 46 Grand River compact needed 190 198 Greater N. D. Assn. cooperation 185 39 Groundwater surveys approp. 206 91 Ground water surveys, Geol. survey 87 Dickinson-Williston annual rain Diversion dam below Fort Peck 169 Ground water irrigation possible 183 44 Ground water surveys map 1950 88 ... . 21 Groundwater surveys pending 182 41 Groundwater survey reports 180 75 Groundwater surveys requested 178 206 160 Haley-Bowman irrigation plan . 72 200 Drainage projects in Red River valley 73

217

Hazen flood control project 28 - 31

# INDEX—(Continued)

| INDEX—(Continued)                                                                                       |                 |                                                                                          |                   |  |  |
|---------------------------------------------------------------------------------------------------------|-----------------|------------------------------------------------------------------------------------------|-------------------|--|--|
| P                                                                                                       | age             |                                                                                          | Page              |  |  |
| Heart Butte-Dickinson dams                                                                              | 39              | Little Missouri irrigation                                                               | 193               |  |  |
| Heart River transmission line                                                                           | 31              | Little Missouri, topographic maps                                                        | 89                |  |  |
| Heart River unit report                                                                                 | 39              | Loans, irrigation projects                                                               | 49                |  |  |
| Heart River water devel. map                                                                            | 30              |                                                                                          |                   |  |  |
| Hereford feeders, Yellowstone                                                                           | 60              | ··· · · · · ·                                                                            |                   |  |  |
| History of irrigation                                                                                   | 13              | Maint. existing dams approp.                                                             | $\frac{203}{207}$ |  |  |
| Hydroelectric power in 1955                                                                             | 37              | Maint. existing dams reported<br>Mandan development farm                                 | 33                |  |  |
| Hydroelectric power in 1995                                                                             | 51              | Mandan irr. pasture feed trial                                                           |                   |  |  |
|                                                                                                         |                 | Mandan flood levees                                                                      | 19                |  |  |
|                                                                                                         | 187             | Map. Buford-Trenton irr. dist.                                                           | 204-5             |  |  |
|                                                                                                         | 175             | Maps, Graphs, Pictures, list<br>Map irrigated and non in U. S.                           | 2-3               |  |  |
| Intake structure, Garrison dam                                                                          | 38              | Map irrigated and non in U.S.                                                            | 52                |  |  |
|                                                                                                         | 197<br>187      | Map, Missouri-Souris project                                                             | 40<br>23          |  |  |
|                                                                                                         | 207             | Marmarth flood control project<br>Metigoshe lake project                                 | 31                |  |  |
| Irrigation and fruit raising                                                                            | 65              | Minot-Jamestown annual rainfall                                                          | 171               |  |  |
| Irrigation canal, Yellowstone                                                                           | 58              | Missouri Basin water projects, map                                                       | 26                |  |  |
| Irrigation crop returns, Mont. N. Dak.                                                                  | 65              | Missouri river at Bismarck, picture                                                      | 86                |  |  |
| Irrigation district. Cartwright                                                                         | 39              | Missouri river diversion, dam                                                            | 44                |  |  |
| Irrigation, carly history                                                                               | $\frac{13}{39}$ | Missouri river pumping projects                                                          |                   |  |  |
| Irrigation, Fort Clark unit<br>Irrigated gardens, Bismarck                                              | 39<br>86        | Missouri river states committee<br>Missouri-Souris, canal picture                        | 199<br>34         |  |  |
| Irrigation, Garrison diversion                                                                          | 43              | MoSouris Conservancy District                                                            | 83                |  |  |
| Irrigation, Knife river                                                                                 | 201             | Missouri-Souris, Crosby-Mohall                                                           | 43                |  |  |
| Irrigation, Nesson Valley project                                                                       | 45              | Missouri-Souris, Crosby-Mohall                                                           | 45                |  |  |
| Irrigation, Lewis & Clark map                                                                           | 50              | MoSouris Projects Assn.                                                                  | 85                |  |  |
| Irrigation, Little Missouri                                                                             | 193             | Missouri-Souris project map                                                              | 40                |  |  |
| Irrigated and non- in U. S. map                                                                         | 52<br>195       | Missouri-Souris pump plant                                                               | $\frac{51}{173}$  |  |  |
|                                                                                                         | 185             | Moorhead-G. Forks annual rainfall<br>Motor fuels, oils, from lignite                     | 160               |  |  |
| Irrigated pasture cattle feeding                                                                        | 194             | Motor rues, ons, from lighte                                                             | 170               |  |  |
|                                                                                                         | 195             |                                                                                          |                   |  |  |
| Irrigation potential in No. Dak.                                                                        | 49              |                                                                                          |                   |  |  |
| Irrigation, N. D. Pumping project                                                                       | 45              | National Park Service. Dickinson                                                         | 91                |  |  |
| Irrigated oats, barley, Yellowstone<br>Irrigation progress in No. Dak<br>Irrigation project, Burlington | 84              | Nesson Valley Irrigation project                                                         | 45<br>160         |  |  |
| Irrigation project Burlington                                                                           | 28<br>85        | N. D. boundary lines, Research F.                                                        | 100               |  |  |
| Irrigated projects proposed                                                                             | 67              | N. D. drainage basin areas                                                               | 160               |  |  |
| Irrigation progress, Knife river                                                                        | 43              | N. D. Rural electrification                                                              | 174               |  |  |
| Irrigation projects, financing                                                                          | 49              | N. D. industrial development                                                             | 175               |  |  |
| Irrigation by sprinkler on MoSouris                                                                     | 55              | N. D. population trends                                                                  | 175               |  |  |
| Irrigation returns, Lewis & Clark<br>Irrigation stockfeeding, Yellowstone                               | 51              | No. Dak. irrigation progress                                                             | 28                |  |  |
| Irrigation stock/ceding, Yellowstone                                                                    | 60              | N. D. Pumping Division<br>N. DakMont. irrigation crop returns                            | 45<br>65          |  |  |
| Irrigation, returns Yellowstone                                                                         | 54              | No. Dak. Reclamation Assn.                                                               | 83                |  |  |
| Irrigation, siphoning in tubes<br>Irrigation. Williston pumping                                         | 45              | N. D. Topographic mapping                                                                | 90                |  |  |
| Irrigation Wogansport unit                                                                              | 42              | N. D. Topographic mapping<br>N. D. Water Conservation<br>N. D. wheat yields for 35 years | 25                |  |  |
| Irrigation, world acreages                                                                              | 53              | N. D. wheat yields for 35 years                                                          | 78                |  |  |
| Irrigation returns, Yellowstone                                                                         | 51              |                                                                                          |                   |  |  |
|                                                                                                         |                 | Oahe dam in South Dakota                                                                 | 17                |  |  |
| Jackson dam repair picture                                                                              | 208             | Organization, pers., Water Commission                                                    | <b>1</b> 9        |  |  |
| James and Shevenne diversion                                                                            | 41              |                                                                                          | 5                 |  |  |
| James river compact needed                                                                              | 190             |                                                                                          |                   |  |  |
| James river compact needed<br>James river water development<br>Jamestown dam Burcau report              | 195             | Painted Woods, N. D. Pumping                                                             | 45                |  |  |
| Jamestown dam Bureau report                                                                             | 41              | Park Plans, for recreation<br>Park, Roosevelt National Memorial                          | 199<br>86         |  |  |
| Jamestown-Minot annual rainfall<br>Jamestown unit. Missouri-Souris                                      | 171             | Park, Roosevelt National Memorial<br>Pasture, irrigated, vs. dry land                    | 185               |  |  |
| Jaunita Lake project No. 443                                                                            | 45<br>31        | Pictures, maps, graphs list                                                              |                   |  |  |
| sounda Bare project 10, 119                                                                             |                 | Population trends in No. Dak.                                                            | 175               |  |  |
|                                                                                                         |                 | Post-war proj. coop. 50-50 basis                                                         | 207               |  |  |
|                                                                                                         | 201             | Powers, duties, Water Commission                                                         | 9                 |  |  |
| Knife river irrigation progress                                                                         | 43              | Power line construction progress                                                         | 46                |  |  |
| Knife river, topographic mapping                                                                        | 89<br>32        | Power transmission lines                                                                 | 68<br>196         |  |  |
| Knife river water devel. map                                                                            | 94              | Pumping site, Ft. Clark irr. dist<br>Precipitation average, maps                         |                   |  |  |
|                                                                                                         |                 | Precipitation, U. S. map                                                                 | 162               |  |  |
|                                                                                                         | 176             |                                                                                          |                   |  |  |
|                                                                                                         | 187             |                                                                                          |                   |  |  |
| Letter of transmittal                                                                                   | 6               | Rainfall and temperature data                                                            | 76                |  |  |
| Lewis & Clark irr. dist. map                                                                            | 50              | Record rise Devils Lake waters                                                           | 71                |  |  |

Lewis & Clark irrigation returns ......

Lignite, motor fuels and oils \_\_\_\_\_

Lignite stored, Garrison dam \_\_\_\_\_ Lignite vein, Garrison dam \_\_\_\_\_

Little Missouri compact needed ......

| 7      | Mandan development farm                                              | 33   |
|--------|----------------------------------------------------------------------|------|
|        | Mandan irr. pasture feed trial 194                                   | -195 |
|        | Mandan flood levecs                                                  | 19   |
| 7      | Map. Buford-Trenton irr. dist                                        | 04-5 |
| 5      | Maps, Graphs, Pictures, list<br>Map irrigated and non in U. S.       | 2-3  |
| 8      | Map irrigated and non in U.S                                         | 52   |
| 7      | Map, Missouri-Souris project                                         | 40   |
| 7      | Marmarth flood control project                                       | 23   |
| 7<br>5 | Metigoshe lake project                                               | 31   |
| 5      | Minot-Jamestown annual rainfall                                      | 171  |
| 8      | Missouri Basin water projects, map                                   | 26   |
| 5      | Missouri river at Bismarck, picture                                  | 86   |
| 9      | Missouri river diversion, dam                                        | 44   |
| 3      | Missouri river pumping projects 4                                    |      |
| 9      | Missouri river states committee                                      | 199  |
| 6      | Missouri-Souris, canal picture                                       | 34   |
| 3      | MoSouris Conservancy District                                        | 83   |
| 1      | Missouri-Souris, Crosby-Mohall                                       | 43   |
| 5      | Missouri-Souris, Jamestown unit                                      | 45   |
| 0      | MoSouris Projects Assn.                                              | 85   |
| 3      | Missouri-Souris project map                                          | 40   |
| 2      | Missouri-Souris pump plant                                           | 51   |
| 5      | Moorhead-G. Forks annual rainfall                                    | 173  |
| 5      | Motor fuels, oils, from lignite                                      | 160  |
| 4      | Mott-Bowman-Beach annual rainfall                                    | 170  |
| 5      |                                                                      |      |
| 9      |                                                                      |      |
| 5      | National Park Service. Dickinson                                     | 91   |
| 4      | Nesson Valley Irrigation project                                     | 45   |
| 8      | N. D. boundary lines, Research F.                                    | 160  |
| 5      | North Dakota's capitol                                               | 5    |
| 7      | N. D. drainage basin areas                                           | 160  |
| 3      | N. D. Rural electrification                                          | 174  |
| 9      | N. D. industrial development                                         | 175  |
| 5      | N. D. population trends                                              | 175  |
| 1      | No. Dak. irrigation progress                                         | 28   |
| 0      | N. D. Pumping Division                                               | 45   |
| 3      | N. DakMont. irrigation crop returns                                  | 65   |
| 4      | No. Dak. Reclamation Assn.                                           | 83   |
| 5      | N. D. Topographic mapping                                            | 90   |
| 2      | N. D. Water Conservation                                             | 25   |
| 3      | N. D. wheat yields for 35 years                                      | 78   |
| 1      |                                                                      |      |
|        | Only down in South Delete                                            | 17   |
| 0      | Oahe dam in South Dakota                                             | 9    |
| 8<br>1 | Organization, pers., Water Commission                                | 9    |
|        |                                                                      |      |
| 0<br>5 | Painted Woods, N. D. Pumping                                         | 45   |
| a<br>1 | Park Plans, for recreation                                           | 199  |
| 1      | Park, Roosevelt National Memorial                                    | 86   |
| 5      | Pasture, irrigated, vs. dry land                                     | 185  |
| อ<br>1 | Fictures, maps, graphs list                                          |      |
|        | Population trends in No. Dak.                                        |      |
|        | Post-war proj coon 50-50 basis                                       | 207  |
| 1      | Post-war proj. coop. 50-50 basis<br>Powers, duties, Water Commission | - 9  |
| 3      | Power line construction progress                                     | 46   |
| 9      | Power transmission lines                                             | 68   |
| ñ      | Dumming site Et Claule im dist                                       | 100  |

| Power transmission lines              | 50-50 basis 207  |
|---------------------------------------|------------------|
| Power transmission lines              | · Commission 9   |
|                                       | on progress 46   |
|                                       | lines 68         |
| Pumping site, Ft. Clark irr. dist 196 | rk irr. dist 196 |
| Precipitation average, maps164-166    |                  |
| Precipitation, U. S. map 162          | ар 162           |
| -                                     |                  |

| Rainfall and temperature data      | . 76  |
|------------------------------------|-------|
| Record rise Devils Lake waters     | . 71  |
| Recreational Center, Devils Lake   | . 57  |
| REA Velva generating plant picture | e 36  |
| REA power line construction        | . 47  |
| Reclamation Assn. No. Dak.         |       |
| Rrecreational Park plans           | . 199 |

51

160

161 161

190

# STATE OF NORTH DAKOTA

### INDEX—(Continued)

#### Page

|                                                                                                                                                                 |                              | •                                                                                                 |                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|---------------------------------------------------------------------------------------------------|------------------|
| Recreational plan Dickinson dam<br>Red River and tributaries map<br>Red River Basin drainage<br>Red river flood damage \$28,000,000<br>Red River flood projects | 198<br>74<br>188<br>79<br>17 | Transmission power lines<br>Tri-State Waters Comm. compact<br>Tree ring studies show drouth years | 68<br>187<br>216 |
| Red River valley drainage map                                                                                                                                   | 72                           | U. S. Fish & Wildlife Service                                                                     | 177              |
| Rock for Garrison dam closure                                                                                                                                   | 35                           | U. S. map, annual precipitation                                                                   | 162              |
| Roosevelt National Memorial Park                                                                                                                                | 86                           | Underground waters surv. pending                                                                  | 182              |
| Rural electrification in N. Dak.                                                                                                                                | 174                          | Underground waters surveys requests                                                               | 178              |
| Rush Lake project No. 463                                                                                                                                       | 31                           | Underground water survey reports                                                                  | 180              |
| Sanish bridge replacement                                                                                                                                       | 37                           | Van Hook, Sanish joint townsite                                                                   | 35               |
| Sanish-Van Hook joint townsite                                                                                                                                  | 35                           | Water Commission activities                                                                       | 29               |
| Sheyenne and James diversion                                                                                                                                    | 41                           | Water Comm. appropriations, state                                                                 | 201              |
| Sheyenne dam—Devils Lake report                                                                                                                                 | 45                           | Water Comm. appropriations                                                                        | _33              |
| Sheyenne river dam site picture                                                                                                                                 | 56                           | Water Comm. financial statement                                                                   | 212              |
| Sheyenne river to Fargo diversion                                                                                                                               | 81                           | Water Commission personnel                                                                        | 9                |
| Snow removal, flood control, 1950                                                                                                                               | 47                           | Water Comm. powers, duties                                                                        | .9               |
| Snow run-off 1950 exceeded records                                                                                                                              | 75                           | Water conservation development                                                                    | 25               |
| Souris (Mouse) river compact                                                                                                                                    | 188                          | Water devel. map, Heart river                                                                     | 30<br>32         |
| Souris (Mouse) river reference                                                                                                                                  | 191                          | Water projects, Missouri basin map                                                                | 32<br>26         |
| Souris-Red river reference                                                                                                                                      | 192                          | Water right supplement printed                                                                    | 211              |
| Soil Survey fund allocated AC                                                                                                                                   | 55                           | Weather Bureau, maps, graphs                                                                      | 164              |
| Sprinkler irrigation on MoSouris                                                                                                                                | 55                           | Weather Bureau, U. S. report                                                                      | 163              |
| Standing Rock reservation surveys                                                                                                                               | 89                           | Well water irrigation possible                                                                    | 183              |
| State Engineer                                                                                                                                                  | 12                           | Wheat yields in N. D. for 35 years                                                                | 78               |
| State Engineer salary approp                                                                                                                                    | 206                          | Williston-Dickinson annual rain                                                                   | 169              |
| State Geologist report                                                                                                                                          | 179                          | Williston Pumping Irrigation                                                                      | 45               |
| State Health Dept. report                                                                                                                                       | 183                          | Wilson dam repair picture                                                                         | 205              |
| Stockfeeding profits, Yellowstone                                                                                                                               | 59                           | Wogansport proposed irr. unit                                                                     | 42               |
| Storage Lake Darling, min. and max.                                                                                                                             | 176<br>206                   | World irrigation acreages                                                                         | 53               |
| Stream-flow measure, approp.<br>Stream gaging, U. S. Geol. Survey                                                                                               | 206                          |                                                                                                   |                  |
|                                                                                                                                                                 | 87<br>97                     |                                                                                                   |                  |
| Surge tanks, Garrison dam                                                                                                                                       | 20                           | Yellowstone. Danielson farm home                                                                  | 64               |
| burge tanks, darmon dam                                                                                                                                         | 20                           | Yellowstone feeder lambs                                                                          | 81               |
|                                                                                                                                                                 |                              | Yellowstone hereford feeders, Irr.                                                                | 60               |
| Table of contacts                                                                                                                                               |                              | Yellowstone irrigated alfalfa                                                                     | 80               |
| Table of contents                                                                                                                                               | 4                            | Yellowstone, irrigated oa's, barley                                                               | 84               |
| Temperature and rainfall data                                                                                                                                   | 76<br>167                    | Yel'owstone Irrigation canal                                                                      | 58               |
| Topographic mapping approp.                                                                                                                                     | 203                          | Yellowstone irr. acre returns                                                                     | 61<br>62         |
| Topographic mapping approp                                                                                                                                      | 203                          | Yellowstone irrigation returns                                                                    | 51               |
| Tunnel construction, Garrison dam                                                                                                                               | 22                           | Yellowstone irrigation results                                                                    | 63               |
| Tunnel intake, Garrison dam                                                                                                                                     | 18                           | Yellowstone Pumping project                                                                       | 41               |
| Tunnel outlets, Garrison dam                                                                                                                                    | 16                           | Yellowstone river compact plan                                                                    | 188              |
| Tunnel portals, Garrison dam                                                                                                                                    | 24                           | Yellowstone stockfeeding profits                                                                  | 59               |
| Transmission line, Heart river                                                                                                                                  | 31                           | Yields crops, irr. test farms                                                                     | 186              |
|                                                                                                                                                                 | •••                          |                                                                                                   |                  |

Page